next up previous
Next: Midterm 2 Up: Midterm 1 Previous: Questions

Solutions

1)
From the vector-calculus identity $ \nabla\cdot (f {\bf V}) = \nabla
f\cdot {\bf V} + f\nabla \cdot {\bf V} $, we can write

So we can write
\begin{displaymath}
\nabla\cdot (vp\nabla u) = v\nabla\cdot (p\nabla u) + p\nabla v\cdot
\nabla u~.
\end{displaymath} (1)
\begin{displaymath}
v{\cal L} u = \nabla\cdot (vp\nabla u)-p\nabla v\cdot
\nabla u +vqu~,
\end{displaymath} (2)

and similarly for $u$ and $v$ switched. Using Eq. (2),
\begin{displaymath}
\int_{\cal V} d\tau ~(v {\cal L}u -u {\cal L}v) = \int_{\cal V} d\tau
~\nabla\cdot [ p(v\nabla u - u\nabla v ) ]~.
\end{displaymath} (3)

Using Stoke's theorem, Eq. (3) can be rewritten as the surface integral over the boundary: $\oint_{\cal S} d{\bf a}\cdot (v\nabla u - u \nabla v) p $.

2)
Using the superposition principle, the total electric potential can be expressed as
\begin{displaymath}
V(d) = \int {1\over 4\pi \epsilon_0} {dq\over r}~,
\end{displaymath} (4)

where $dq = \sigma Rd\phi dz$ in the cylindrical coordinate with $0<\phi < 2\pi$ and $ -h< z<0$, $\sigma = {Q\over 2\pi Rh}$ is the surface charge density, and $r= \sqrt{ (d-z)^2 +R^2}$ is the distance to the charge source. If you explicitly spell out the integral, it is given as
$\displaystyle V(d)$ $\textstyle =$ $\displaystyle {1\over 4\pi \epsilon_0}\int_0^{2\pi} d\phi\int_{-h}^0 dz{
\sigma R \over \sqrt{ (d-z)^2 +R^2}}$  
  $\textstyle =$ $\displaystyle {Q\over 4\pi \epsilon_0 h } \ln \left[ { \sqrt{ d^2+R^2} -d \over
\sqrt{(d+h)^2 +R^2} -(d+h)} \right]~,$ (5)

using the integral formula $ \int {dx\over \sqrt{ x^2+a^2} }= \ln ( x+\sqrt{x^2+a^2} )$.

The electric field is in the direction of the axis of the cylinder from the azimuthal symmetry, so $E_z = -\partial_d V(d)$, which gives

\begin{displaymath}
E_z = {Q\over 4\pi \epsilon_0 h } \left( {1\over \sqrt{d^2+R^2} }
-{1\over \sqrt{(d+h)^2+R^2}} \right)~.
\end{displaymath} (6)

3)
Boundary conditions: $V(0,y,z) = V(x,0,z)= V(x,a,z)=0$ and $V(b,y,z) = V_0(y)$.

(a) Within the pipe, $\nabla ^2 V = 0$. Here one simplification we can make is to drop the $z$ dependence since the system is translationally invariant in $z$. So the equation reduces to $ (\partial_x^2
+\partial_y^2) V = 0$.

Using the separation of variables technique in Cartesian coordinates (because the system is rectangular),

\begin{displaymath}V = \sum_l v_l\end{displaymath}

where $v_l = X(x) Y(y)$. Then

\begin{displaymath}\partial_x^2 X(x) =- \partial_y^2 Y(y) = l^2~,\end{displaymath}

since the function is expected to be periodic in $y$.

The solution is obtained as

\begin{displaymath}Y = A_l \sin(ly) +B_l \cos (ly)\end{displaymath}

and

\begin{displaymath}X = C_l \cosh (lx) +D_l \sinh( lx)\end{displaymath}

. From the boundary conditions $V(0,y,z) = V(x,0,z)= V(x,a,z)=0$, we must choose $B_l = C_l = 0$ and $l = n\pi/a$ where $n$ is an integer. So the form is expected to be

\begin{displaymath}V = \sum_{n=1}^\infty c_n \sin ({n\pi
y\over a} \sinh ({n\pi x\over a})~,\end{displaymath}

where $c_n$ is some coefficient (different from $C_l$ above).

We can determine the coefficients $c_n$ from the remaining boundary condition at $x=b$,

\begin{displaymath}V_0(y) = \sum_{n=1}^\infty c_n \sin ({n\pi
y\over a} \sinh ({n\pi b\over a})~,\end{displaymath}

which leads to

\begin{displaymath}c_n = { \int _0^a dy~ V_0(y) \sin( {n\pi y\over a} ) \over {a\over
2} \sinh ( {n\pi b/over a}) }~. \end{displaymath}

(b) You simply replace $V_0(y) = V_0$, which gives

\begin{displaymath}V(x,y) = {4V_0 \over \pi } \sum_{n \rm odd} { \sinh (n\pi x/a) \sin
(n\pi y/a) \over n \sinh (n\pi b/a) } \end{displaymath}

4)
(A) Electric displacement: You can use the Gauss Law of displacement,
\begin{displaymath}
\oint {\bf D} \cdot d{\bf a} = Q_{\rm enc}~,
\end{displaymath} (7)

where $Q_{\rm enc}$ is the ``free'' charge enclosed by the Gaussian surface. Since Eq. (7) holds for both inside and outside the sphere, and $Q_{\rm enc}$ is the embedded charge $q$, you obtain $ {\bf D}(r) = {q\over 4\pi r^2} \hat{r}$ for all $r$.

(B) Electric field: Since $E = D/\epsilon$ for a linear dielectric,

$\displaystyle {\bf E}(r)$ $\textstyle =$ $\displaystyle {q\over 4\pi \epsilon_1 r^2} \hat{r}~~( r<R)$ (8)
  $\textstyle =$ $\displaystyle {q\over 4\pi \epsilon_2 r^2} \hat{r}~~( r>R)~.$ (9)

(C) Electric potential: The potential can be obtained from integrating the electric field from infinity as follows

$\displaystyle V(r)$ $\textstyle =$ $\displaystyle -\int_\infty ^r E(r) ~dr$ (10)
  $\textstyle =$ $\displaystyle {q\over 4\pi \epsilon_2 r}~~(r>R)$ (11)
  $\textstyle =$ $\displaystyle {q\over 4\pi \epsilon_2 R}+ {q\over 4\pi \epsilon_1 }\left( {1\over
r} - {1\over R}\right)~~(r<R)~.$ (12)

(D) Bound surface charge: It is the bound surface charge that makes the electric field discontinuous upon crossing the surface of the sphere at $r=R$. In other words, $\sigma_b = \epsilon_0 [ E(R+\delta)
-E(R-\delta) ]$ for $\delta \rightarrow 0$. The result from (B) above can be used to calculate the following:

\begin{displaymath}
\sigma_b = {q\epsilon_0 \over 4\pi R^2} \left( {1\over \epsilon_2
}-{1\over \epsilon_1} \right)~.
\end{displaymath} (13)


next up previous
Next: Midterm 2 Up: Midterm 1 Previous: Questions
Hyok-Jon Kwon
2001-12-19