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It is shown that Dirac's "Poisson bracket" appr~ch to relativistic quanturr. mechanics 
is equivalent to the wave function approach which was originally suggested by Yukawa. 
It is pointed out that this circumstance is very similar to the case of nonrelativistic quantum 
mechanics in which Heisenberg's commutator formalism is equivalent to the algorithm based 
on the Schrodinger equation. 

§ l. Introduction 

Quantum mechanics and relativity were formulated before most of us were 

born, and are likely to remain as the two major scientific languages for many 

years to come. For this reason, the question of whether these two physical 

theories can be made compatible with each other transcends generations. The 

basic mathematical apparatus for special relativity is the Poincare transformation. 

There are two different but equivalent ways of formulating quantum mechanics. 

One way is to con;truct a system of commutators for the operators correspond

ing to dynamical quantitites, and the other way is to construct superposable wave 

functions from whi~h probability distributions are derived. Thus the attempt to 

c~mbine quantum mechanics with relativity should take f'he - form of constructing 

the commutator system and/ or wave functions which ca·n be made compatible with 

transformation properties of special relativity .. 

As for the wave function method, the most successful approach has been the 

relativistic oscillator model starting from Yukawa's original work. 1
> On the other 

hand, the most promising commutator formalism was given by Dirac. 2
> The purpose 

of the present paper is to show that Dirac's "Poisson bracket" formalism is equiv- · 

alent to Yukawa's wave function approach. Using the technique of spacetime di

agrams, we show first that the starting point of Yukawa is the same as that of 

Dirac. .. 
We then point out that the ultimate goal of Dirac's approach is to find a 

spacetime solution of the commutator equations for the generators of the Poincare 

group with the subsidiary condition which prevents motions along the time-like 
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direction. It is shown that the wave functions derivable within the framework of 

Yukawa's oscillator formalism form the representations of the Poincare group with

out time-like excitations. It is· shown therefore that the two approaches are eq uiv

alent to each other. 

in § 2, we show that the physi~al principles for relativistic quantum mechanics 

are contained in Eqs. (2), (9) and (10) of Yukawa's original paper." It is shown 

that his equations (2) and (9) represent a combined effect of the space-momentum 

uncertainty relation of Heisenberg and the "C-number" time-energy uncertainty of 

Dirac. 3
> It is also shown that Yukawa's equation (10) describes the Lorentz defor

mation property of relativistic wave functions, which takes a natural form in 

Dirac's light-cone coordinate system. 

In § 3, we demonstrate that the relativistic oscillator wave functions - derivable 

m Yukawa's approach form a solution of Dirac's commutator equations. Section 4 

deals with the subsidiary condition which reduces the four-dimensional Minkowskian 

space into a three-dimensional ·Euclidian space in which nonrelativistic quantum 

mechanics is valid. It is shown that Dirac's "instant-form" subsidiary condition 

is equivalent to that of Yukawa which suppresses time-like excitations. 

In § 5, the physical implications of §§ 2""'4 are discussed. It is pointed out 

that the wave function method, as in the case of nonrelativistic quantum mechanics, 

serves many practical purposes in high-energy physics and in physics teaching. 

§ 2. Physical basis for Yukawa's approach and Dirac's approach 

The purpose of this section is to show that the starting point of Yukawa is 

identical to that of Dirac. For this purpose, we start with the oscillat~r model of 

Yukawa. Let us consider a system of two quarks bound together by a harmonic 

oscillator of unit strength, and let x 1 and x, specify the spacetime coordinates for 

these two quarks. We are then led to consider the hadronic coordinate X and 

the internal quark coordinate x defined as 

X= (x1 + x.) / 2 , 
x= (x1-x2) / 2-v'Z. (1) 

In his original paper,n Yukawa considered the harmonic oscillator wave func

tion of the form 

(2) 

where z and t are the longitudinal and time-like sepa~ations between the two 

quarks. The transverse components have been suppressed for simplicity. In order 

to make the theory consistent w~th relativity and to prevent negative values of 

(mass) •, Yukawa noticed in his equation (9) of his papern that time-like excitations 

should be suppressed, and the form of Eq. (2) reflects this observation. 

We can sketch the wave function of Eq. (2) in the spacetime diagram of 

Fig. 1. According to this figure, there are excitations corresponding to classical 
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Uncertainty 
without Excitations 

z 

HeisenberQ : Uncertainty 
with Excitations 

Fig. 1. Spacetime diagram representing Heisen· 
berg's u~ual space-momentum uncertainty 
and Dirac's " C-number" time-energy un· 
certainty relation. There are no excita· 
tions along the t axis. This means that 
there is no Hilbert space associated with 
this axis. The oscillator wave function of 
Eq. (2) which was given first by Yukawa 
combines these two uncertainty relations. 
This form of wave function was suggested 
first by Yukawa in Eqs. (2) and (9) of 
Ref. 1). 

motions along the z axis , but there are no motions along the time-separation axis. 
There is however an unc~rtainty associated with the ground-state oscillator wave 

function along this time-like direction. 

This spacetime asymmetry is precisely what Dirac observed in his earlier 

papers.'> He noted that the uncertainty relation between time and energy has to be 
a "C-number" uncertainty, which is commonly observed in the relation between the 

energy width and lifetime of unstable systems.<> The "C-number" in the matrix 

language is a one-by-one matrix, and this in turn implies the absence of excited 

states in the harmonic oscillator. 

Let us next discuss special relativity. In Ref. 2), Dirac introduced the light

cone coordinate system in which the variables 

u= (t+z) /v'Z and v= (t-z) /v'2 (3) 

play the basic role. The immediate consequence of this choice of variables is tha t 

the quantity uv is invariant under Lorentz transformations: 

uv = (t2
- z 2

) /2 =constant . (4) 

This means that the coordinates u and v are elongated and contracted respectively 
under the Lorentz transformation in such a way that the area of the rectangle 

m Fig. 2 remains constant. 

In Eq. (10) of his paper,u Yukawa suggested the form 

<f;(x,p) =exp[x"x,,/2- (P·x/ M) 2
], (5) 

as a possible Lorentz generalization of the Gaussian factor of Eq. 

M and P are the mass and fourcmomentum of the hadron respectively. 

of the light-cone variabfes, this exponential form can be written as 

(1), where 

In terms 

(6) 
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where {3 is the velocity of the hadron along the z direction. Here again the 

trivial transverse coordinate variables are suppressed. This formula specified the 

elliptic region whose major and minor axes are on the light cones and whose area 

remains invariant under Lorentz transformations. Indeed this is a manifestation of 

Dirac's light-cone geometry illustrated in Fig. 2. 

l 

• 

Fig. 2. Spacetime geometry derivable from 
Dirac's light-cone coordinate system . . 
Under the Lorentz transformation, the 
sq uare in this figure becomes a rectangle. 
The area of this rectangle is a Lorentz
invariant quantity. As is iqdicated in Eq. 
(6), the covariant form of Eq. (5) which 
was given by Yukawa in Eq. (10) of Ref. 
1) represents this geometry where the 
sq uare and rectangle are replaced by a 
circle and an ellipse respectively . 

§ 3. Harmonic oscillator solution of Dirac's commutator equations 

Thanks · to the later works by Markov,5
> Takabayasi,8

> Sogami7
> and I shida,8

> 

Yukawa's oscillator approach had been brought to the form in whi~h the wave 

functions are soi utions of the following Lorentz-invariant oscillator equation: 

(7) 

with the subsidiary condition 

(8) 

where 

Using the technique of variable separation, Kim and Noz9
> obtained explicit 

solutions to the above equations, and constructed a complete set of wave functions 

where the form of Eq. (5) is the ground-state wave function. They then started 

adding quantum mechanical interpretations to the formalism. In order to explain 

basic; high-energy phenomena inc! uding mass spectra, form factors, and the parton 

picture in terms .~f probability distribution, Kim and Noz9
> considered also the 

product of two relativistic wave functions. As was pointed out by Takabayasi, 10
> 

it is an essential step in constructing relativistic quantum mechanics to secure the 

definition of Poincare-invariant inner product for any pair of wave functions. 
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The purpose of this section is to prove that the above-mentioned wave function 

approach is equivalent to Dirac's "Poisson bracket" formalism, by showing that the 

physical solutions of the above oscillator differential equation form a spacetime 

solution of Dirac's commutator equations . . In his paper,'> Dirac noted that the 

generators of the Poincare transformation form the ten fundamental quantities in the . 
dynamical system. For the present two-body system, these generators take the 

form 

where 

L;. = i [XJJ ; ax·- x.a;ax~], 

L 11• = i [x,o/ ox•- x.a / ox"]. 

(9) 

(10) 

The operators P 11 generate spacetime translations. M,. is anti-symmetric under the 

interchange of 11 and 11. Three M!J, with i, j, = 1, 2, 3, generate rotations, and 

three M 0, are the generators of Lorentz transformations. 
The above ten generators satisfy the following commutations relations: 

[P,, P.] =0, 

(11) 

Dirac emphasized in his paper2> that the problem of finding a new dynamical 
system reduces to the problem of finding a new solution of these equations. 
The word "new solution" means a spacetime solution t~ which proper quantum 

mechanical interpretation can be given. 

It is shown in the literature that we can construct such a spacetime solution 

from the solutions of the partial differential equation of Eq. (7) in the form 

¢(X, x) = cf(x) exp[ ± iP·X], (12) 

where cp (x) satisfies the harmonic oscillator differential equation 

H(x)cf(x) =J..cf(x) (13) 

with 

We are now interested in the solutions of the above oscillator equation which 
forlfl a solution of Dirac's "Pois~on bracket" equations given in Eq. (11). The 

pro~edure of finding such solutions is of course to construct the representations of 
the Poincare group which are diagonal in the Casimir operatorsw 
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where 

P=P#Pp, 

W=WPWP, (14) 

The above operators commute with the ten generators of the Poincare group given 

in Eq. (9). 

In their recent paper,w Kim et al. obtained an infinte set of so lutions o f 

Eq. (7) which are diagonal in the above Casimir operators, and found the finite 

s ubset satisfying the subsidiary condition of Eq. (8) to be 

·¢(X, x) =exp ( ± iP ·X) </J(x, P) (15) 

with 

</J (x, P ) = (117r) 1
'
2 

[ exp ( - t ' 212) ] Rn1 (r' ) Y"' ({}', ¢'), (16) 

where 

t' = (t- {3z) I (1 - {32) 1/2' 

and r', (} ', ¢' are the spherical coordinate va riab les in a three-dimensional Euclidian 

space spanned by x, y and z', where 

z' = (z- {it) I (1 - {32) 112 . (17) 

R .1 in Eq. (16) is the radial wave function for the three-dimensional isotropic ' 

harmonic oscillator. 

The wave function for the internal quark motion given in Eq. ' (16) satisfies 

the subsidiary condition of Eq. (8) which for given P takes the form 

This constraint implies that there are no time-like excitations m the Lorentz 

frame where the hadron is at rest . Classically, this means that there a re no 

motions along this time-like direction. In the quantum system of harmonic oscilla

tors, there is the ground-state wave function associated with Dirac's . "C-number" 

time-energy uncertainty relation . 

The oscillator wave function given in Eq. (16) indeed is the physical wave 

function which serves many useful purposes in high-energy physics . It solves 

and unifies the oscillator differential equation and the commutator equations giv·en 

in Eq. (7) and Eq. (11) respectively, subject to the 'subsidiary condition of Eq. 

(18). We shall see how Dirac attempted to formulate this subsidiary condition in 
the following section. 

§ 4. Further considerations of the subsidiary condition 

In order to construct a geometry for relativistic quantum mechanics,'> Dirac 
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considered the "instant form" condition 

(19) 

as one of possible constraints which will reduce the four-dimensional Minkowskian 

space into a three-dimensional Euclidian space in which non-relativistic quantum 

mechanics is valid. By using the approximate fonn in Eq. (19), Dirac meant that 

the equality does not have to be an exact numerical equality, and that it is subject 

to further physical considerations. What he wanted to do was to "freeze" the 

motion · along the time-separation variable in a manner consistent with quantum 

mechanics and relativity. If we associate this equality with Dirac's own "C-num

ber" time-energy uncertainty relation which we have discussed in the preceding 

sections, the constraint of Eq. (19) for the present harmonic oscillator system be

comes the subsidiary condition of Eq. (18). 
In order that the dynamical system be completely consistent, the subsidiary 

condition should commute with the generators of the Poincare group: 

[P", P"a}] = 0, 

[ .l\1"8, Ppa}] = 0 . (20) 

The above equations follow immediately from the fact that the operator P Pap + 1s 

invariant under translations and Lorentz transformations. 

However, this does not complete our discussion of the consistency between the 

subsidiary condition and the Poincare transformation, because the operator P2 is 

constrained to take the eigenvalues determined by the harmonic oscillator equation 

given in Eq. (13) through the relation 

(21) 

Therefore, the constraint operator PPaPt should also commute with H(x) of Eq. 

(13). However, a simple calculation gives 

(22) 

This means that the right-hand side is not identically zero, but vanishes only when 

applied to the wave functions satisfying the subsidiary condition of Eq. (18). 
In Ref. 2), Dirac considered also the commutation relations between dynamical 

quantities and the constraint condition which is "approximately" zero. He asserted 

tha t the resulting "Poisson bracket" should also vanish in the same sense. The 

commutator of Eq. (22) indeed vanishes in accordance with the prescription given 

by Dirac. 

Finally, we have to answer the crucial question of how the harmonic oscillator 

model can resolve the "real difficulty" which Dirac mentions in connection with 

the potential term in the "Poisson bracket" formalism. The basic advantage of 

using the oscillator "potential" is that we can carry out explicit calculations to 
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interpret the commutators. 10> 

In formulating his scheme to solve the commutator equations for the generators 

of the Poincare group, Dirac2> chose to adopt the vie..W that each constituent 

particle in "atom" (bound or confined state) is on its mass shell, and that the 

total energy is the sum of all the free-particle energies of the constituents plus 

the potential energy. This potential term indeed causes the "real difficulty" in 

making the commutator system self-consistent. 

In the oscillator formalism derivable from Yukawa's original work, we observe 

the fact that the Casimir operators of the Poincare group indicate clearly that the 

mass of the hadron is a Poincare-invariant constant, but they do not tell anything 

about the masses of constituent particles. Let us write down the momentum oper

ators of the constituents in terms of the X and x variables: 

P1# = (i/ 2) a / aX"+ (i/ 2-/2) a / ax#, 

Pz# = (i/ 2) a / aX#- (i/ 2-/2) a / ax#. (23) 

In order that the constituent mass be a Poincare-invariant constant, p/ and P/ 
have to commute with the Casimir operators of Eq. (14) and with the operator 

H(x) of Eq. (13) which determines the eigenvalues of the Casimir operators. The 

constituent mass operators d~rivable from Eq. (23) do not commute with H(x) 
due to its potential term. We have therefore translated Dirac's real difficulty into 

[p/, H(x)] =FO, [p/, H(x)] =FO. (24) 

These non-vanishing commutators should not cause any difficulty to?ay. The con

cept of off-mass-shell particles is now firmly established through our experience 

with Feynman diagrams. The mass of the constituent particle in a bound or con-' 

fined system does not have to be on its mass shell. 

It is extremely interesting to note that the concept of off-mass-shell particles 
is also derivable from Dirac's time-energy uncertainty relation,u> which eventually 

resolves the difficulty he mentioned in Ref. 2). It is also interesting to see that 

the oscillator formalism derivable from Yukawa's original work · enables us to 

observe this point. 

§ 5. Concluding remarks 

It is well known that there were two different approaches when the present 

form of nonrelativistic quantum mechanics was developed more than fifty years 

ago. They were of course Heisenberg's commutator method and Schrodinger's 

wave function approach. It is therefore not surpril?ing to find that there have 

been commutatoT and wave function approaches to relativistic quantum mechanics. 

In §§ 2"-'4, we discussed this aspect and showed that the wave function method 
starting from Yukawa's 1953 paper 1> is equivalent to the "Poisson bracket" for-
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malism of Dirac!> 

It is also well known from our experience in nonrelativistic quantum mechanics 

that the wave function method is more convenient for calculating quantities which 

can be measured in laboratories. Likewise, the harmonic oscillator wave functions 

have been very useful in computing measurable quantities in the relativistic ·quark 

model. The oscillator formalism has enabled us to construct covariant theoretica] 

models for relativistic extended hadrons to explain the hadronic mass spectra , w 

electromagnetic form factors of the proton,m relativistic SU(6) (8)0(3) m 6del ,8> 

the peculiarities in F eynman' s part on picture/6> the jet phenomenon. m 

Because of its mathematical simplicity, the relativistic oscillator model has 

been very helpful ir;_ attacking physical problems. There are indeed many papers 

on this subject, particularly in this journal. Reference 10) provides an excellent 

review. There are also several review papers designed for teaching purposes.' 8
> 
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