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1 Analytical Tools

1.1 Types of Errors

Limit the number of calculated digits to be consistant with measured digits

1.1.1 Systematic Errors

Example: correcting 2 meter rule: divide or multiply
Divide or multiply?  Double check to get proper value

1.1.2 Quasi Systematic Errors

For analog, error is generally ~1/3 of last division
For digital, error is generally 1/2 last digit

Can be reduced by scanning methods.

1.1.3 Random Errors

Generally change with every measurement.
Error is given by standard deviation of the measurements.
Can be reduce by making several measurements.(see below) 

This approach is limited by drift of other quantities, the degradation fo the sample, etc.

Are quantified by the Standard Deviation

σx =  1
N-1



k=1

N
(xk - 〈x〉)2

1/2

Since the data is usually used to calculate 〈x〉, then use 1
N-1

 as shown.

1.1.4 Accuracy versus Precision

Accuracy refers to the the degree of closeness of a measurement to that quantity’s true value.
Precision refers to the scatter in different measurements of the same quantity, e.g. repeatability.
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1.2 Combining Measurements for the same quantity to lower random error.

1.2.1 Weighted Mean

Weighted Mean is used when values of xn have different uncertanties σn:

xWeightedMean =



n=1

N xn

σn
2



n=1

N
1

σn
2

The uncertainty of the weighted mean is

σWeightedMean =
1



n=1

N 1

σn
2

1.2.2 Mean (usual form when uncertainties are equal)

The approach above gives the simple average when the uncertainties are the same:

xMean = 

n=1

N xn
N

Likewise, when the values for σn above are all the same and equal to σ, it gives:

σMean =
σ

n

1.3 Combining Measurements of different quantities related by an equation to determine error propagation.

1) Produce the the total differential.
2) Square terms so they don't cancel, because in real life they generally don't.
3) The variance (which equals the standard deviaton squared) is the square of the total differential.
   This is illustrated below in “1.3 Finding fitting parameters by minimizing Chi Squared”.

1.4 Distributions

1.4.1 Binomial: how often should something happen?

P(n, N) =
N!

n! (N-n)!
pn(1 - p)N-n

Can plot P as a function of n, then the width or Standard Deviaition is:

σ = Variance = N p(1 - p)
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EXPLANATION

1) N trials:
   N

XXXXXXXXXXXX

2) Probability that the first n are of a certain type and that the remaining type are not of that type:

    n             N-n

11111 000000000000

   pn     (1 - p)N-n

   
3) Number of different arrangements:

           N!

n! (N-n)!

4) Put it all together:

P(n, N) =
N!

n! (N-n)!
pn(1 - p)N-n

1.4.2 Poisson: Can be derived from Binomial with N large but with small P so that N× P finite

For example, N atoms but only small portion N×P = μ decay.

Pμ ν = ⅇ-μ
μν

ν!

Where Pμ ν is the probablity of ν decays

and µ  is the expected or average number of decays

The Standard Deviaition is given by ν

1.5 Chi Squared

1.5.1 Catagorized data

χ2 = 

k=1

N Ek -Ok
2

Ek

where N is the number of bins

Ok is observed number in bin k

and Ek is the expected or theoretical number in bin k.

Note1: The number of degrees of freedom is N minus the number of fitting parameters, so you must pick the number to
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bins to be larger than the number of fitting parameters.

Note 2: When the number of trials is known and all the trials have to be distributed among the bins, then the number of
degrees of freedom is further reduced by 1, since after distributing among the first bins, the ramaining must go into the
last bin. So, even if there are no fitting parameters the number of degrees of freedom would be N - 1.

Example 1: Dice

Example 2: Radioactive Decay

1.5.2 Continuous data

χ2 = 

k=1

N Ek -Ok
2

σk
2

Reduced χ2:  simply divide χ2 by the total number of degrees of freedom.

1.6 (χ2, )

The p-value is the probability of getting a value of Chi Squared equal or larger than yours assuming that the theory is
correct.
You could informally consider it to be the probablilty that the theory is correct based on your data.

1.7 Finding fitting parameters by minimizing Chi Squared

Consider the equation for the acceleration of a particle of mass m caused by an electric field E:

m a = q ℰ

or, combining  the mass and charge as γ = m
q

γa = ℰ

As we did in the free falling mass experiment, assume that we can measure the location of the particle at various times.
Therefore, we need to integrate the equation to get the position as a function of time. This will leave us with additional

constants or parameters that we will later determine from our data by minimizing χ2:

γ
ⅆv
ⅆt

= ℰ

γ v = ℰ t +c1

γ
ⅆx

ⅆt
= ℰ t + c1

γ x =
1
2
ℰ t2 +c1 t +c2 EQ. 1

where γ, c1, c2 are fitting parameters .

Recall that Chi Squared is given by:

Chi Squared = 

k=1

n (Expectedk - Observedk)
2

σk2
EQ. 2
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To use Chi Squared, we would like to have an expression that separates the observed values from the expected values.
To do this we can rewrite EQ. 1 as:

0 = -γ x +
1
2
ℰ t2 +c1 t +c2 EQ. 3

Our expected value can be considered to be “0”, which has no error associated with it. The observed value is:

Observedk = -γ xk +
1
2
ℰ tk

2 +c1 tk +c2 EQ. 4

So, EQ. 2 becomes:

x2 = 

k=1

n 0 - -γ xk +
1
2
ℰ tk

2 +c1 tk +c2
2

σk
Or simply

x2 = 

k=1

n -γ xk +
1
2
ℰ tk

2 +c1 tk +c2
2

σk
EQ. 2’

To get σk we simply take the total derivative of Observedk:

ⅆOk =
∂Ok
∂xk

ⅆxk +
∂Ok
∂t

ⅆ t +
∂Ok
∂ℰ

ⅆℰ

ⅆOk = -γ ⅆxk + (ℰ tk +c1) ⅆ t +
1
2
t2 ⅆℰ

Finally, we square the terms to prevent canceling of errors:

σk
2 = (γ)2 σx2 +(ℰ tk + c1)

2 σt2 +
1
2
t22 σℰ

2 EQ. 5

EQ 2’ and EQ 5 can then be used in a program like Solver or Parafit which finds values for the fitting parameters that
will minimize Chi Squared.
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