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Outline for Today

» Probability
» Statistical inference
» Confidence intervals and upper limits

» How to evaluate the sensitivity of a search
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Probability of a given result from some random process (theory)
e.g. rolling two dice and getting a certain sum ’J -

or, getting 2 background events in a GW search when
the average background is known to be 0.4 events

These are really statements about the expected frequency of each
outcome of the random process, according to a given theory

Probability of a given theory to be the correct description of the
random process

The basis for Bayesian statistics — really about belief

e.g. the probability that detectable GW signals occur with an average rate
of 1 per year, considering an observation that 2 events were found in a
GW search that had an average background of 0.4 events

Note: Theories related by an adjustable parameter are different theories;
have to work with probability density in such cases
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‘ Basic Mathematics of Probability

Definitions:
p(X) = the probability that X is true
0<p(X)<1
p(X|Y) = the probability that X is true, given that Y is true
Basic rules:
Sum rule: p(X,Y) Ep(XandY) = p(X|Y) p(Y)
Marginalization: p(X) = f dY p(X,Y) = / 4Y p(X |V )p(Y)
Bayes’ theorem: Likelihood
Posterior probability\v 0‘ Prior probability
H(X[YV) = p(Y|X)p(X)
p(Y)

S~ “Evidence’ = [dX p(Y | X) p(X)
4

CGWA Summer School



Remarks about Likelihood

The same likelihood function, p(Y|X), governs both frequentist and
Bayesian statistics

It describes the random aspects of the random process
Must be known in either case

Subtle difference of interpretation

Frequentist view considers all possible outcomes Y for one or more
theories X

Bayesian view takes the outcome Y to be fixed, so that the likelihood is a
function of the theory X

Note that the evidence p(Y) involves the prior and likelihood for all theories
(but only for the one outcome that was actually obtained)

Even in the frequentist view, we don’t actually have to be able to
repeat the experiment; we just have to understand what is random
In the experiment
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The Importance of the Prior

The Bayesian approach requires making an assumption about the
prior probabilities of the different theories

Even theories which differ only by the adjustment of one or more
parameters
This can be troublesome
Discrete set of theories: assign all of them equal prior probabilities?
Continuum of theories: assign uniform prior probability density for all
values of the parameter that relates the theories?
Conclusions drawn from an experiment can be strongly
Influenced by the prior

Sometimes just look at the likelihood ratio (or Bayes factor) for two
theories, to see how much the experimental data favors one vs. the other,
without involving the priors
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Example

(originally posed by Graham Woan)

A gravitational wave detector may have detected a gravitational wave
burst from a Type Il supernova. But since burst-like signals in a
detector can also be produced by instrumental glitches—in fact, only 1
out of 10,000 bursts in the data are really due to a supernova—the data
are checked for glitches using an auxiliary veto channel test.

From Monte Carlo simulations, one finds that the veto channel test
confirms that the burst is due to a supernova 95% of the time if there
really was a GW burst in the data; but falsely claims the that the burst is
due to a supernova 1% of the time, when there was no GW burst in the
data.

It turns out that the measured burst passes the veto channel test. What
IS the probability that it's due to a supernova?
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D ‘ What to Conclude from an Experiment

» Bayesian »

How does this result change my belief about
what theories are the most probable?

/\ Theory

Theory

\/ Theory

For what theories is this a likely result?

« Frequentist <

Experimental

Result
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Why Be a Frequentist?

“We know that he did not come through the
door, the window, or the chimney. We also
know that he could not have been concealed
In the room, as there is no concealment
possible. When, then, did he come?”

— Sherlock Holmes, in The Sign of the Four

HHHHH ' Print by Sam Norkin, www.samnorkin.com

The frequentist approach allows you to rule out (with some confidence)
theories which are unlikely to have produced the observed result,
each theory judged independently

You’re not required (or allowed) to assign a probability to any given
theory being the correct one

You’re not required to consider all possible theories
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Why Be a Bayesian?

N— T -

| DEAL NI=Z-XMf In various situations, we maintain a certain
i level of belief in a variety of theories, and our
beliefs change as we gather new information

What is the probability that a certain suitcase,
selected in advance, contains $1,000,000 ?

The Bayesian approach allows you to judge the probability of each
theory to be the correct theory, using data along with prior judgment

Very natural to incorporate results from a sequence of experiments
Bayes’ theorem tells you how to update your beliefs, but not how to
assign probabilities to different theories a priori

To get an absolute probability, you must consider all viable theories
10
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Frequentist Confidence Intervals

Summarize experimental result with a scalar statistic

Number of events above a fixed amplitude threshold, amplitude of the
“loudest” event, ... In principle, could choose anything

Determine what values of this statistic are likely vs. unlikely to be produced
in the case of each candidate theory

Have a choice about what to focus on: unusually high values, lowest-probability
values, unusually low values, Feldman-Cousins ordering principle, ...

0 10 20 0 10 20 0 10 20

Typically group 90% as “likely”, other 10% as “unlikely” (or 95% / 5%, or 99% / 1% )

A frequentist confidence interval for a given experimental result is a set of
theories (i.e., range of parameter values) for which that result was likely

11
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Upper Limit Confidence Intervals

(high values are considered likely)

15 For a “counting experiment”
for a Poisson process with

known background b = 3
and signal mean S

10
Signal P(n) = x"e ™ /n!

mean S

where £=S+ D

5 | Each horizontal blue bar
indicates the 90% “likely” results

Vertical bar is the confidence
0 interval to use for a given n

0 5 10 Measured n

If N=4 events are observed, the confidence interval is [0.00,4.99]

If N=0 events are observed, the confidence interval is empty,

i.e. n=0 is not a likely (at 90%) outcome for any signal mean s when b=3 !
12
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Coverage

Coverage is the fraction of the time that the interval assigned
contains the true theory

e.g. the true signal mean S

Coverage is a property of the interval-setting procedure,
not of any particular experimental result

Coverage for standard Paisson upper-limit intervals (no background)

Coverage may depend '™ . . . l . . l

I
—— Standard upper-limit intervals |

on the true theory 1.0 -

o
o
]

Coverage
=
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[y

=
0
=
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| | | | | | | |
09 0 1 2 3 4 5 5 7 8 =) 10
True value

The important thing is the minimum coverage over all possible true theories
90% in this case, by construction
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(“most likely” values are considered likely)

‘ Feldman-Cousins Confidence Intervals

15

For a counting experiment
for a Poisson process with

known background b = 3

10
Signal
mean s

Gary J. Feldman and Robert D.
Cousins, “Unified approach to the
classical statistical analysis of
small signals”, Phys. Rev D 57,

) 3873 (1998).

This ordering principle

: groups some unusually high
0 and some unusually low

o) 5 10 Measured n Vvalues together as “unlikely”

If N=7 events are observed, the confidence interval is [0.89,9.53]

Note that even if the signal mean S is zero, this experiment will produce an
interval excluding zero 8.4% of the time
14
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Feldman-Cousins Coverage

Coverage for Feldman-Cousins intervals
1.0 | T T | [ [ [ |
—— Feldman-Cousins "upper limits" {one-sided)
—— Feldman-Cousins two-sided intervals

093 H \j\ _
0.9 (1 |
. A4 :

09— ="+ 5 & 7
Feldman-Cousins intervals (blue curve) satisfy 90% minimum
coverage, by construction

=
o
I

Coverage

0
True walue

Sometimes people use “Feldman-Cousins upper limits”, using
only the upper end of the interval even if the lower end is nonzero

Those over-cover for all true values (red curve) !
15
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Loudest Event Statistic

Essentially a counting experiment with the threshold dynamically
set to be infinitesimally above the amplitude of the highest-

amplitude event (Oyay)

This i legitimate fr ntist pr re!
s Is alegitimate frequentist procedure Probability that all

Rate per galaxy: 2.303 + 1n Pb background events
R < Rgo% — TN have P < Ppax
G (/Omax )

Observation time —" "\_ Number of galaxies within range
If ignore background (i.e. take P,=1), then limit is conservative

If include background, then there is some chance of getting:

e An empty interval, if P, < 0.10

e An upper limit which is misleadingly low
e.g. if P, = 0.12, then Ry, = 0.18 / [T N (0rmax)]

16
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Bayesian Parameter Estimation and

Confidence Intervals

In a family of theories, the “best” theory is taken to be the one
which maximizes the posterior probability

If the prior was uniform, then this is also the theory with a
maximum likelihood

Sometimes involves marginalizing over “nuisance parameters”

AN AN

0 10 20 0 10 20 0 10 20

A Bayesian confidence interval is a set of theories which has a
specified probability (e.g. 90%) of containing the true theory

Compare to:

A frequentist confidence interval for a given experimental result
Is a set of theories for which that result was likely

17
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Notes on Upper Limits, etc.

Always based on a population of sources
Parametrized in a physical (or non-physical) way
Confidence intervals / limits are placed on regions of the parameter space

Study using Monte Carlo simulations
Add simulated signals to real data and re-run the analysis to see how
many are detected

Desirable to do the analysis “blind” until the analysis details
are frozen

Study background and simulated-signal samples, but not the real sample

Avoids the possibility of human bias that could, in principle, make the
stated upper limit invalid

If human judgment is involved, it’s difficult to predict how the human(s)
would have behaved if some other outcome had occurred

18
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Evaluating Detection Efficiency

Test /tune searches using simulated signals
Astrophysically modeled...

or ad hoc, e.g. “Sine-Gaussians”

h(t) = h, sin(2xft) exp(-2(=ft/Q)?) ho = hy (Q/4f)Y2 [ nl/4
Linearly polarized; random sky position & polarization angle f—
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ﬂi Frequency Dependence of Sensitivity

Strain Sensitivities for the LIGO Interferometers
Best Performance for S4 LIGO-G050230-02-E

LHO 2k {2005.02.26) - S4: Binary Inspunl Range (1. 4/1.4 Msun) = 3.5 Mpc

LLO 4km (2005.03.11) - $4: Binary Inspiral Range (1.4/1.4 Msun) = 7.3 Mpc | :

LHO 4km (2005.02.26) - S4: Binary Inspiral Range (1.4/1 4 Msun) = 8.4 Mpc
== |nitial LIGO goal from Science Requirements Document

hrss 50% for Q 8 9 sme Gau55|ans with varlous central freqs

h[f]. 1/Sqrt[Hz]

le-24

10 100 1000 10000
Frequency [Hz]
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Exclusion Regions

Example from LIGO-Virgo all-sky burst search:
Parameter space is rate vs. signal strength
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