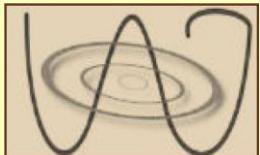


Gravitational-Wave Data Analysis: Lecture 2

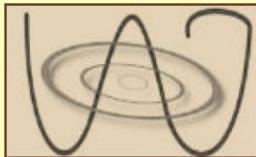
Peter S. Shawhan

Gravitational Wave Astronomy Summer School
May 29, 2012



Outline for Today

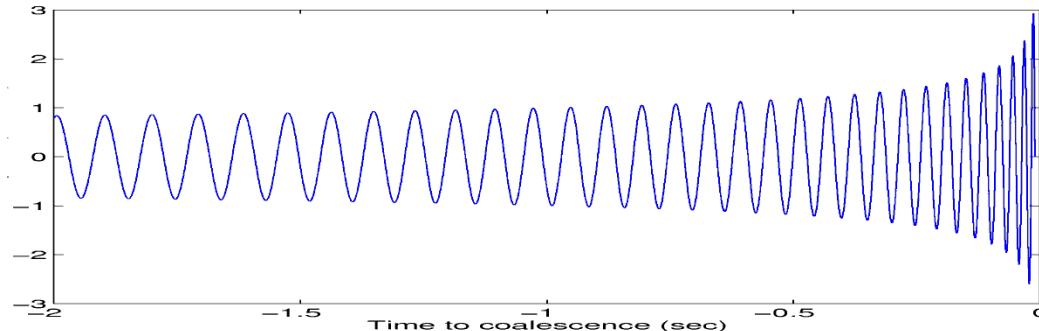
- ▶ **Matched filtering in the time domain**
- ▶ **Matched filtering in the frequency domain**
- ▶ **Optimal noise weighting**
- ▶ **Filter banks for inspiral signals**
- ▶ **Consistency tests**
- ▶ **Searches for continuous-wave signals**



Searching for Known Waveforms

Example: low-mass inspiral

$h(t)$



$$h(t) = A(t) \cos(\Psi(t))$$

Waveform known well, or fairly well, in some parametrized space

e.g. inspiral with $1.4+1.4 M_{\odot}$

or with $10+1.4 M_{\odot}$

Another example: continuous-wave emission from a spinning neutron star



Phase Evolution of an Inspiral

Accurate knowledge of the phase is crucial for matched filtering

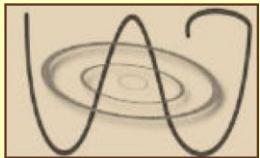
Orbital phase vs. time \rightarrow orbital phase vs. frequency during chirp

“Post-Newtonian expansion” if spins are negligible:

$$\begin{aligned}\Psi(f) = & 2\pi f t_c + \frac{3}{128\eta} (\pi m f)^{-5/3} && \text{Newtonian} \\ & + \frac{5}{96\eta} \left(\frac{743}{336} + \frac{11}{4} \eta \right) (\pi m f)^{-1} && 1\text{PN} \\ & - \frac{3\pi}{8\eta} (\pi m f)^{-2/3} && 1.5\text{PN} \\ & + \frac{15}{64\eta} \left(\frac{3058673}{1016064} + \frac{5429}{1008} \eta + \frac{617}{144} \eta^2 \right) (\pi m f)^{-1/3} && 2\text{PN} \\ & + \dots\end{aligned}$$

Relativistic effects

where $m = (m_1 + m_2)$, $\eta = \frac{m_1 m_2}{m^2}$ and “chirp mass” is $m\eta^{3/5}$

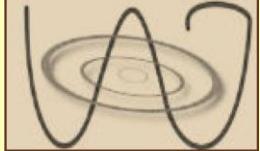


Inspiral Phase to 3.5PN

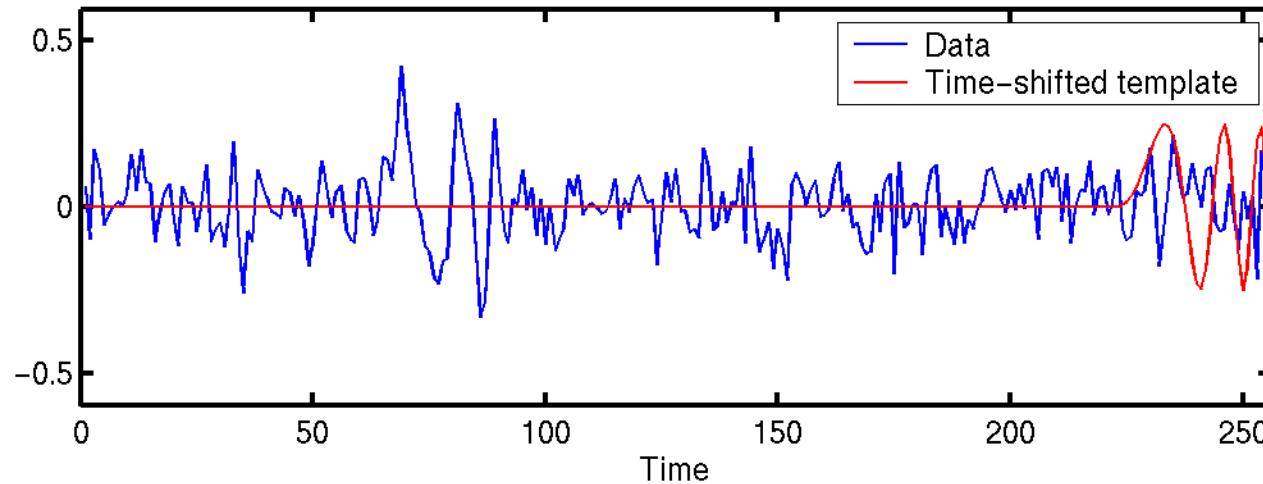
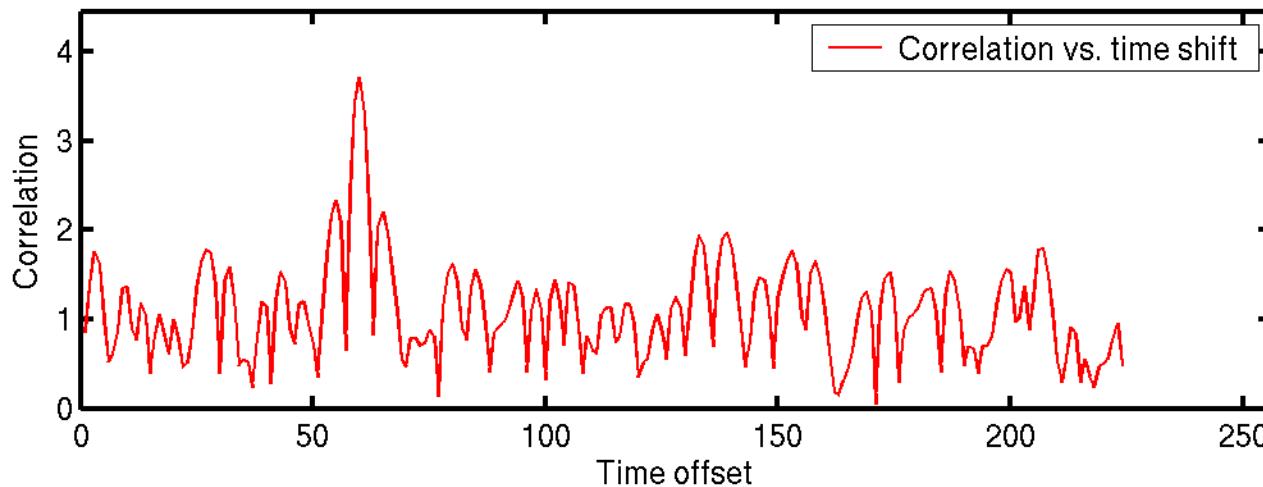
$$\Psi(f; M, \eta) = 2\pi f t_C - 2\phi_C - \pi/4$$

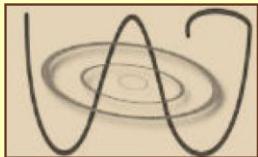
$$\begin{aligned} &+ \frac{3}{128\eta v^5} \left\{ 1 + \left(\frac{3715}{756} + \frac{55}{9}\eta \right) v^2 - 16\pi v^3 + \left(\frac{15\,293\,365}{508\,032} + \frac{27\,145}{504}\eta + \frac{3085}{72}\eta^2 \right) v^4 \right. \\ &+ \pi \left[\frac{38\,645}{756} - \frac{65}{9}\eta \right] \left[1 + 3 \ln \left(\frac{v}{v_0} \right) \right] + \left\{ \frac{11\,583\,231\,236\,531}{4\,694\,215\,680} - \frac{640}{3}\pi^2 - \frac{6\,848}{21}(\gamma + \ln(4v)) \right. \\ &+ \left(-\frac{15\,335\,597\,827}{3\,048\,192} + \frac{2\,255}{12}\pi^2 \right) \eta + \frac{76\,055}{1\,728}\eta^2 - \frac{127\,825}{1\,296}\eta^3 \left. \right\} v^6 \\ &+ \left. \pi \left[\frac{77\,096\,675}{254\,016} + \frac{378\,515}{1\,512}\eta - \frac{74\,045}{756}\eta^2 \right] v^7 \right\}, \end{aligned}$$

... **where** $v = (\pi M f)^{1/3}$



Basic Illustration of Matched Filtering





General Comments About Matched Filtering

Correlating data with template is equivalent to an FIR filter with coefficients following the template

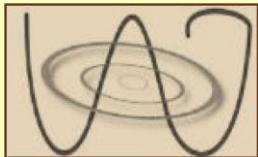
The impulse response of that FIR filter looks like the template, but *time-reversed*

The goal of this kind of filter is to “compress” an extended signal into a delta function

Phase coherence is more important than amplitude matching

Also known as “Wiener optimal filter”

Optimal detection statistic if noise is Gaussian



Source Parameters vs. Signal Parameters

Inspiral source parameters

Masses (m_1, m_2)

Spins

→ Negligible for neutron stars, at least

Orbital phase at coalescence

→ Maximize analytically when filtering

Inclination of orbital plane

}

→ Simply multiplicative for a given detector
(long-wavelength limit)

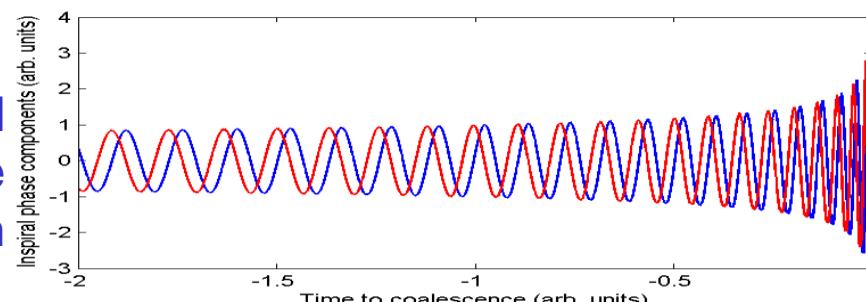
Sky location

→ Simply multiplicative

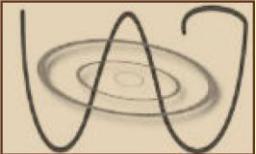
Distance

Coalescence time

Filter with orthogonal
templates, take
quadrature sum



→ Only have to explicitly search over masses and coalescence time
("intrinsic parameters")



Matched Filtering in Frequency Domain

$$C(t) = \int_{-\infty}^{\infty} dt' s(t') h(t' - t)$$

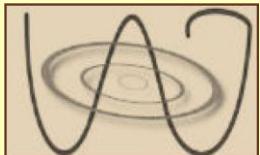
Time offset Data Template with time offset

Rewrite correlation integral using Fourier transforms...

$$\Rightarrow C(t) = 4 \int_0^{\infty} \tilde{s}(f) \tilde{h}^*(f) e^{2\pi i f t} df$$

This is simply the inverse FFT of $\tilde{s}(f) \tilde{h}^*(f)$

Computationally efficient way to calculate filter output for a range of times!



Optimal Matched Filtering with Frequency Weighting

$$C(t) = 4 \int_0^{\infty} \frac{\tilde{s}(f) \tilde{h}^*(f)}{S_n(f)} e^{2\pi i f t} df$$

FFT of data

Template; can be generated in frequency domain using stationary phase approximation

Noise power spectral density

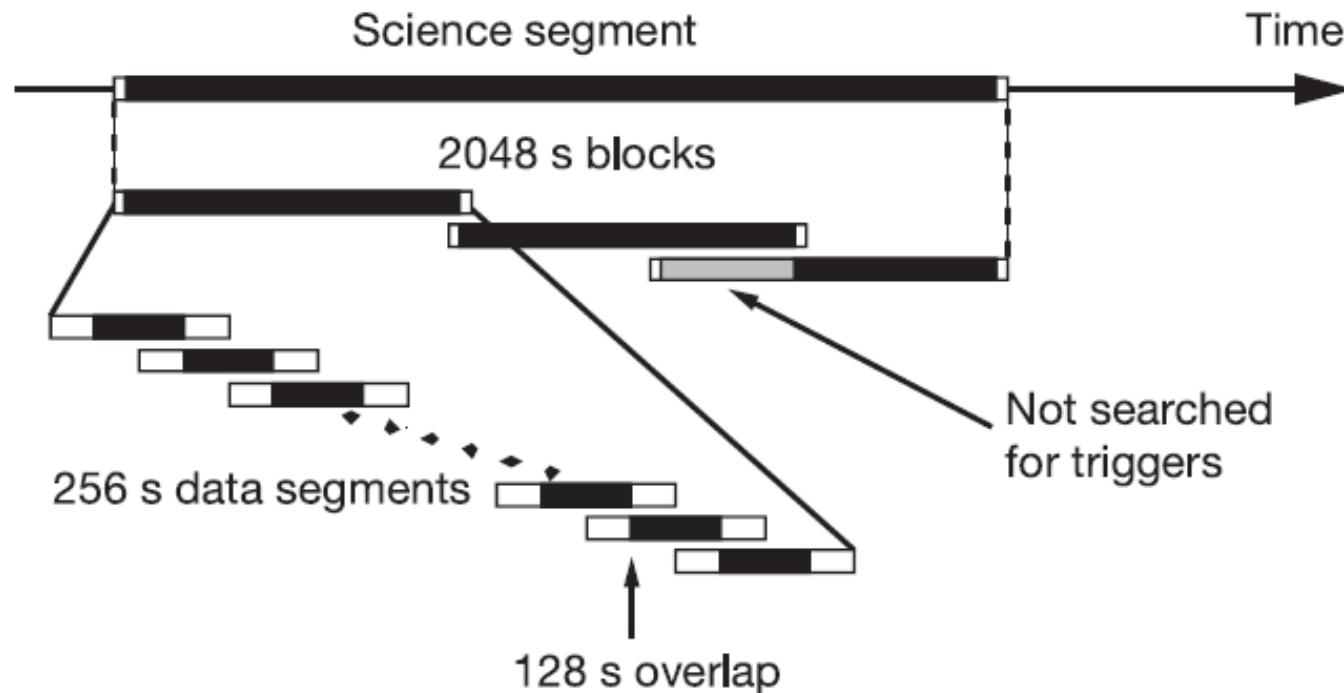
Look for maximum of $|C(t)|$ above some threshold \rightarrow trigger

Searching a Full Data Set

Search overlapping intervals to cover science segment, avoid wrap-around effects

Do inverse FFTs on, say, 256 s of data at a time

Estimate power spectrum from bin-by-bin median of fifteen 256-sec segments



Template Matching

Want to be able to detect any signal in a *space of possible signals*

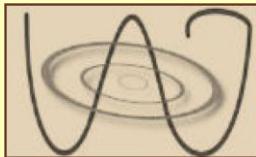
All with different phase evolution

... but do it with a finite set of templates!

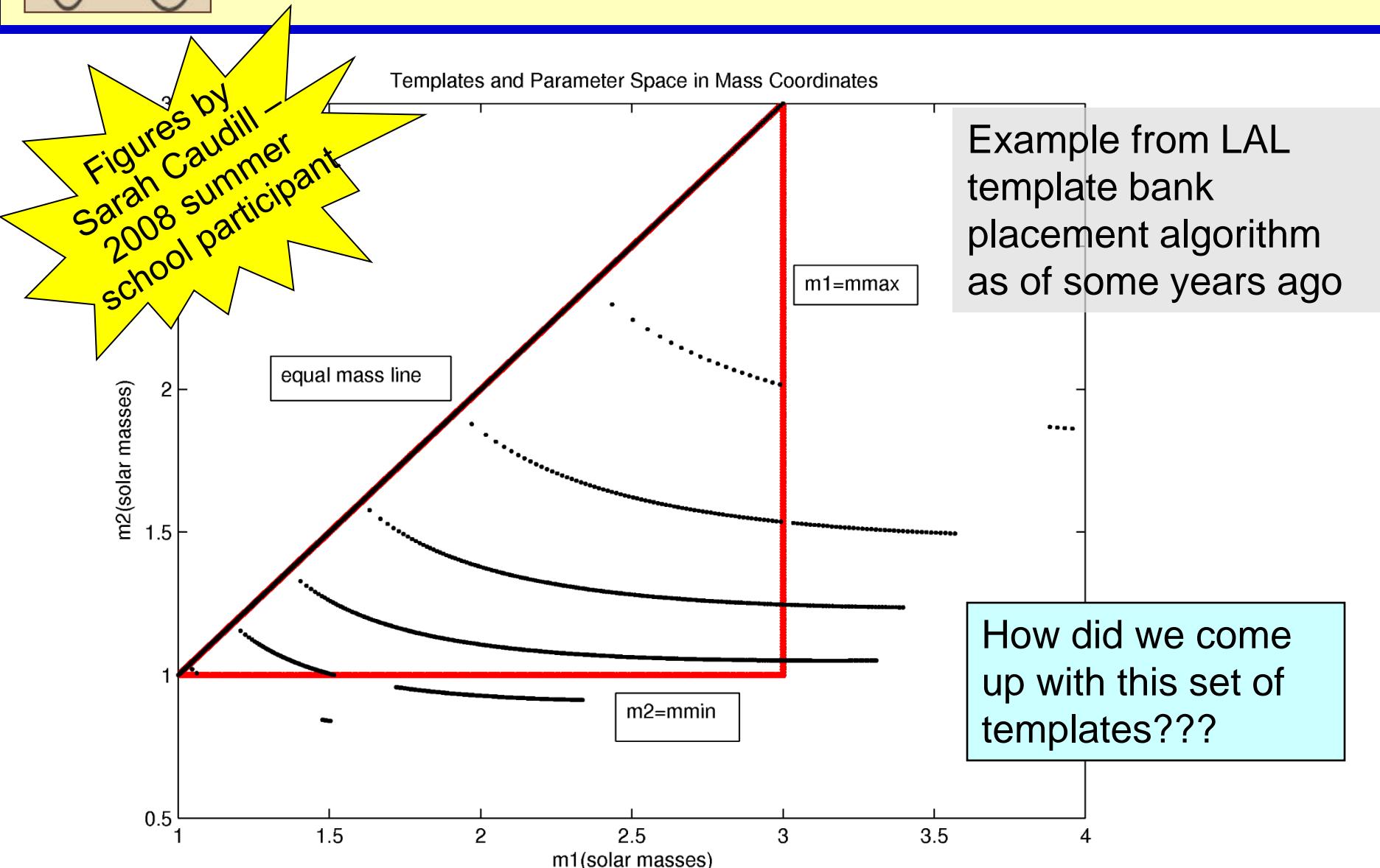
So make sure there is a “close enough” template for every part of the signal space

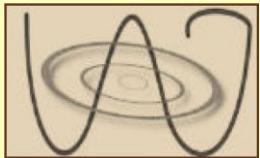
Require a minimum overlap between signal and template, e.g. 0.97

Often can calculate a “metric” which parametrizes the mismatch for small mismatches

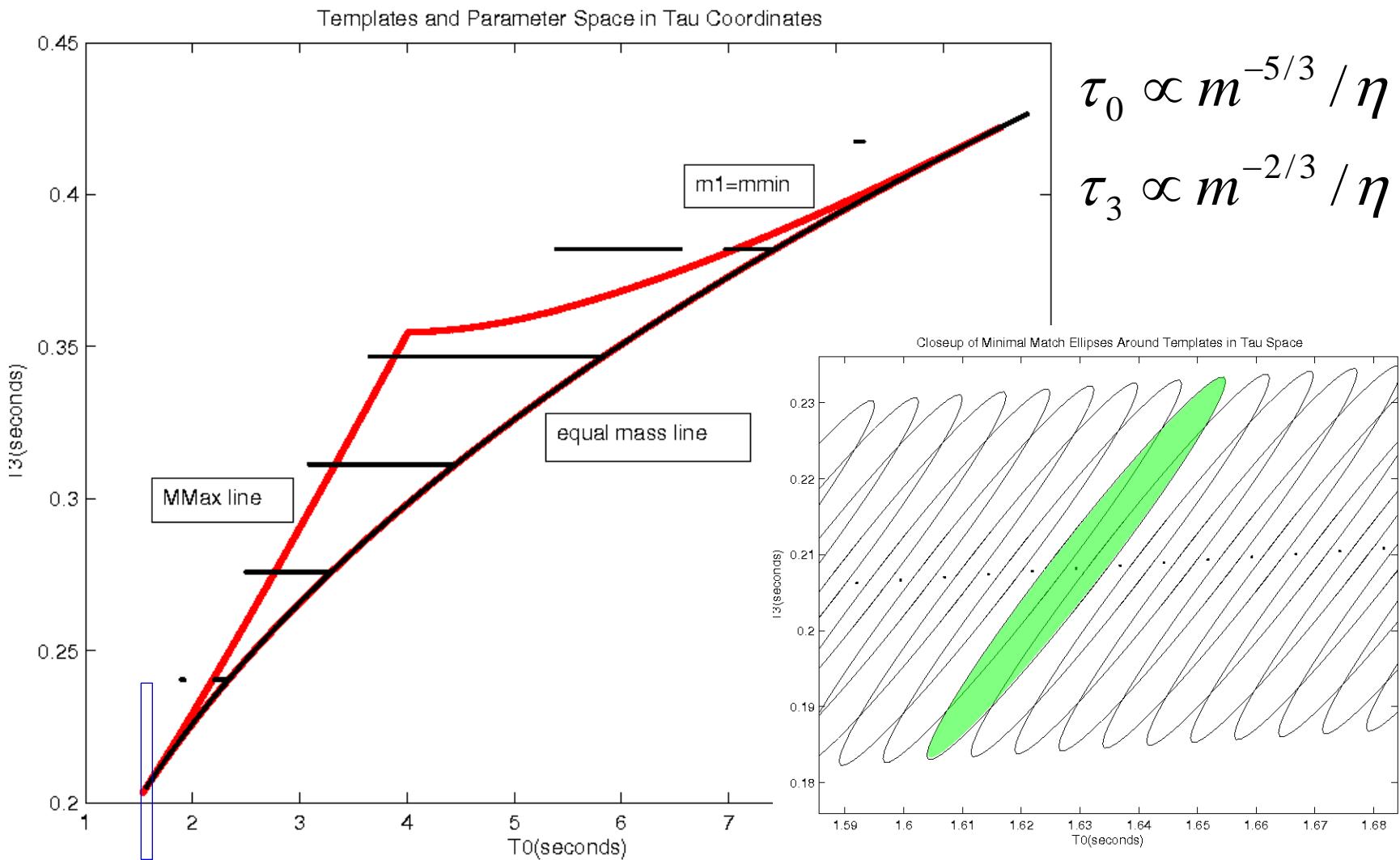


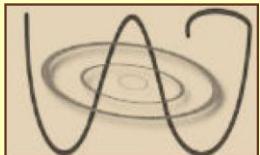
Template Bank Construction



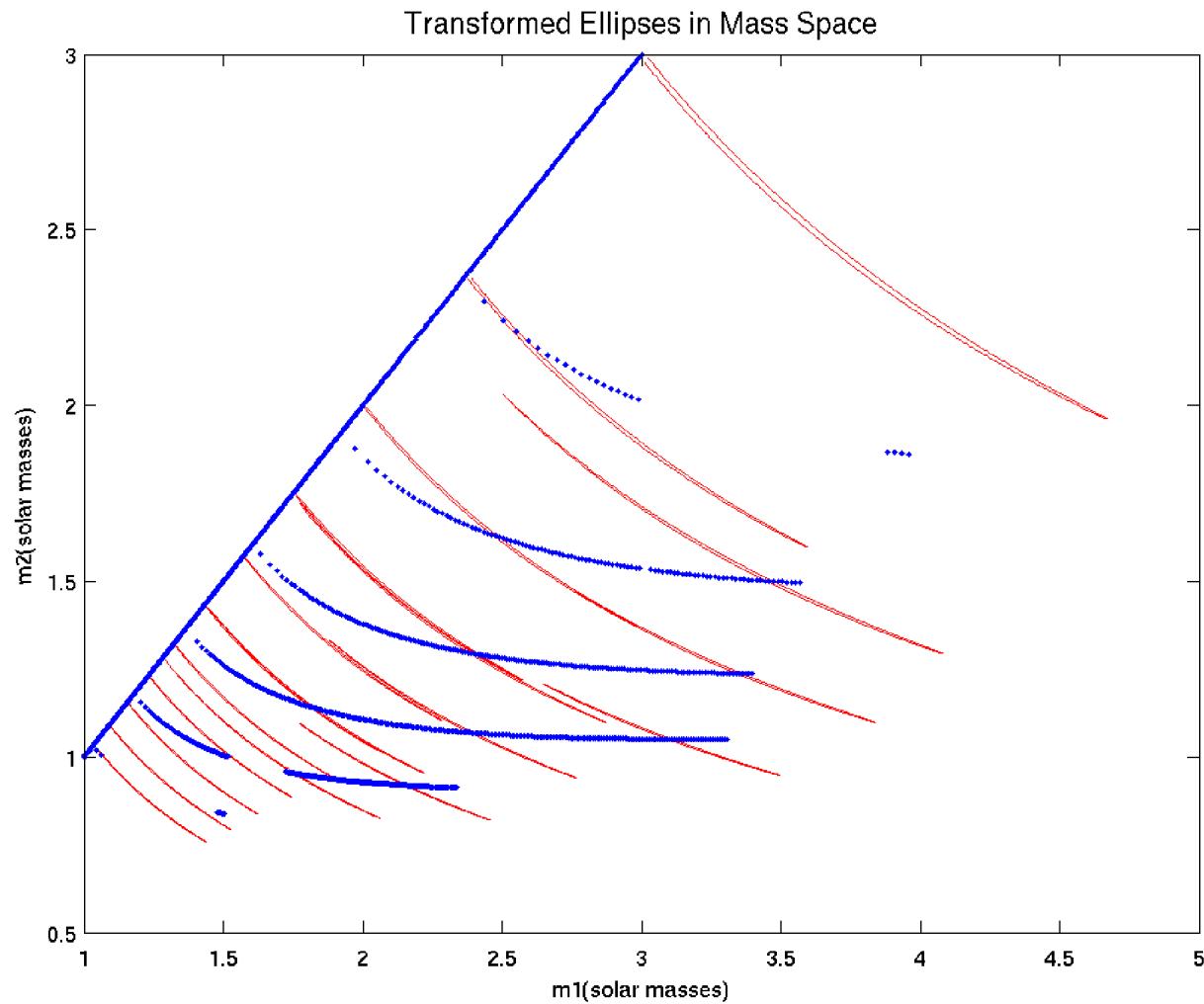


Template Bank Construction in (τ_0, τ_3) space



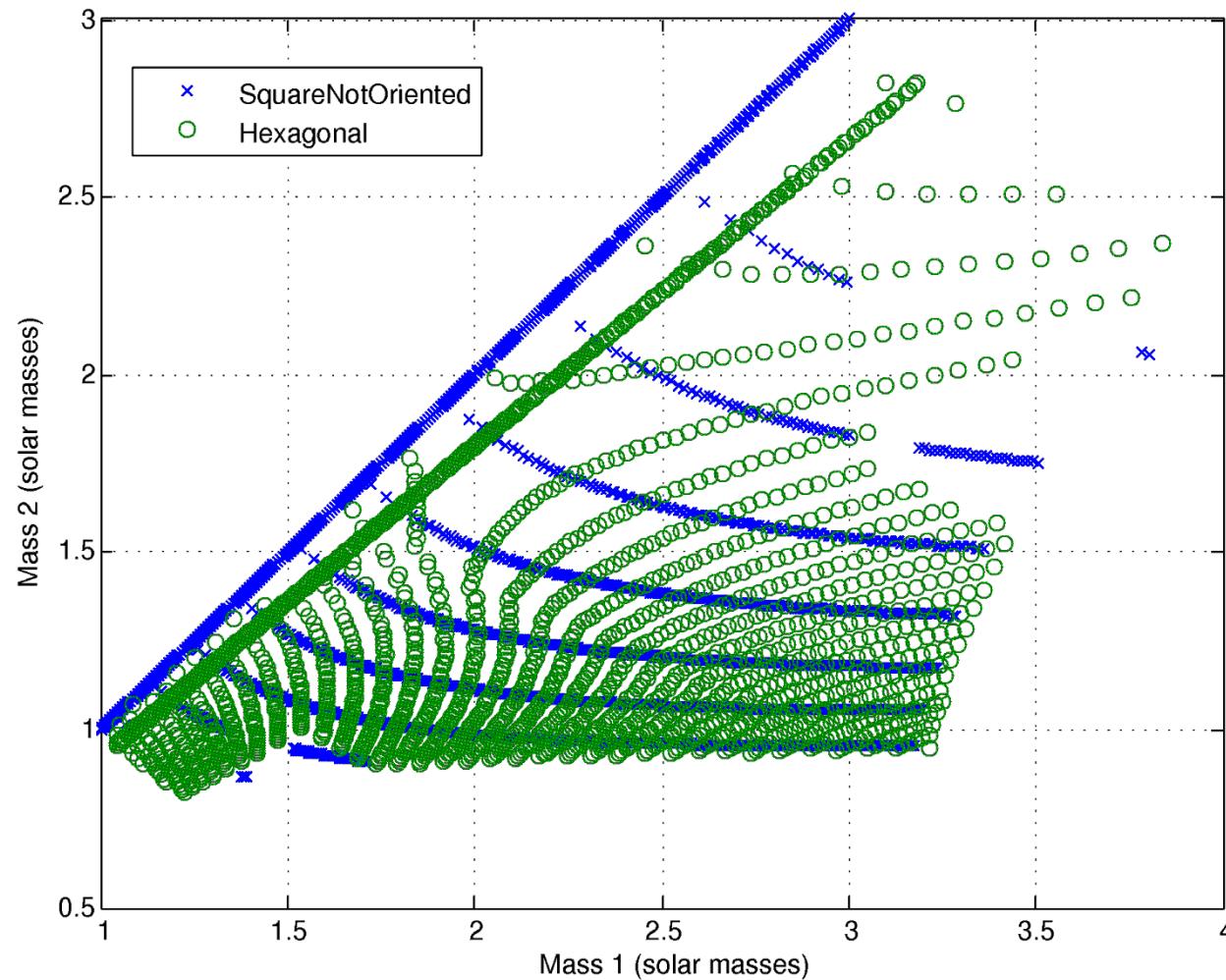


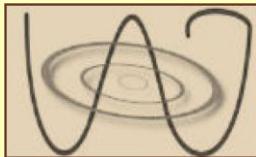
Ellipses in Mass Space





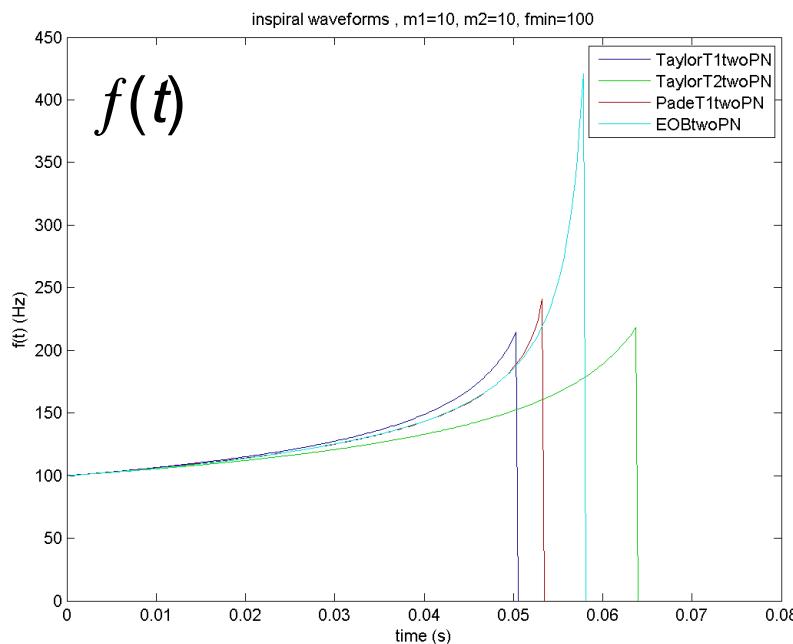
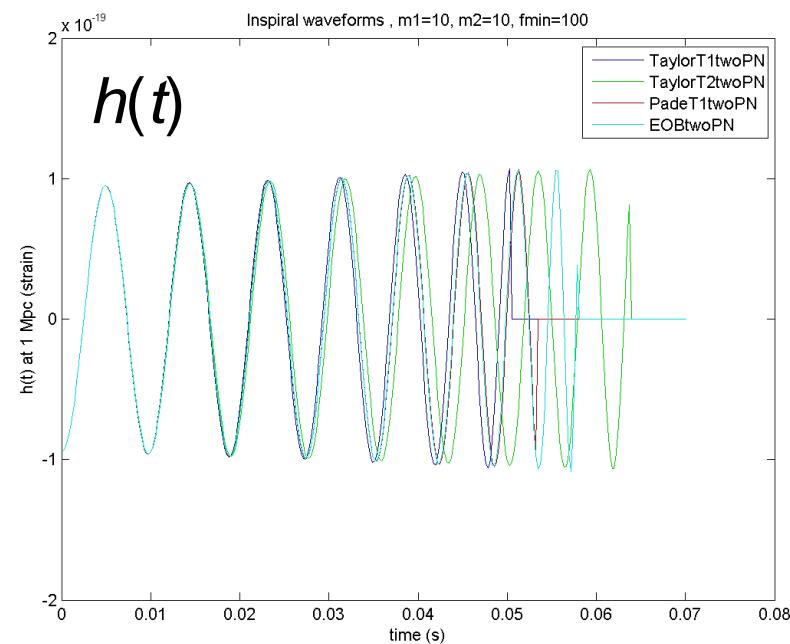
Different Bank Layout Methods



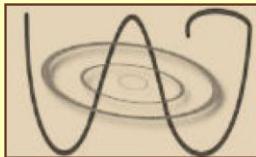


Less-certain Analytic Waveforms for High-Mass Inspirals

Different analytic approximations for $10+10 M_{\odot}$ black hole binary



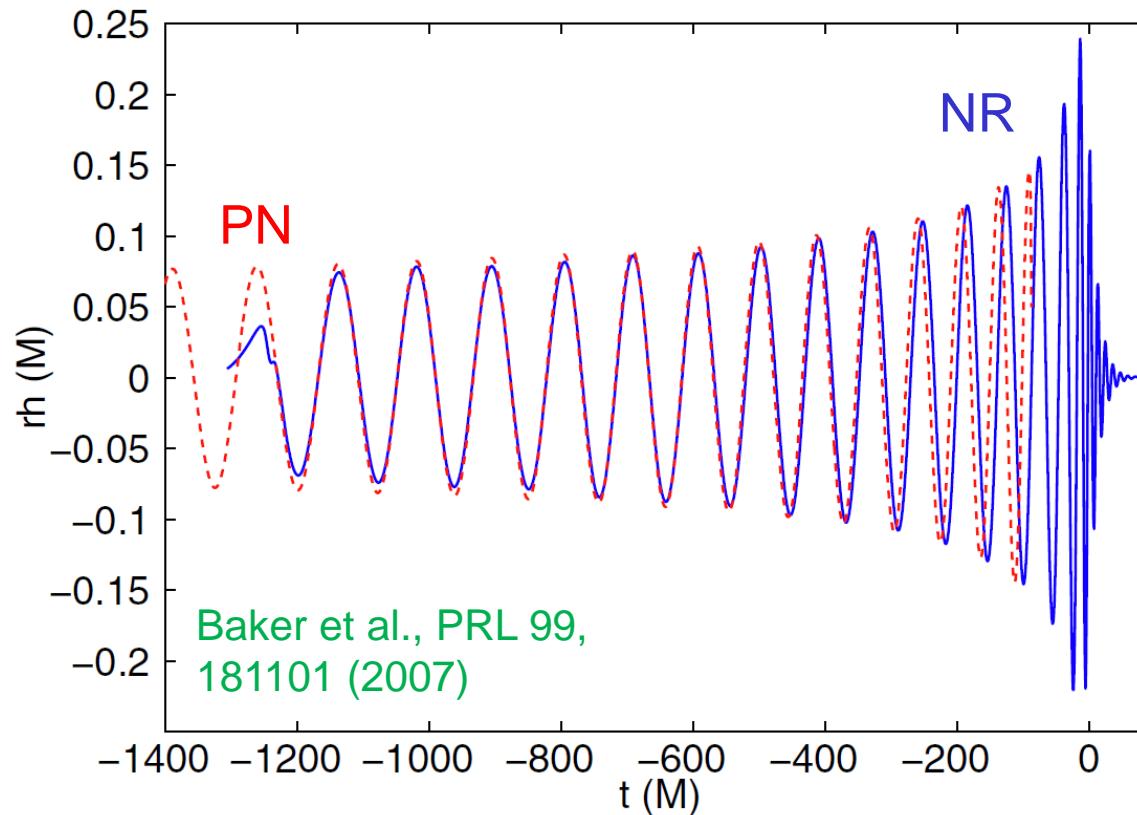
Also, black hole spin can have a large effect on the waveform

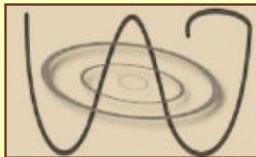


Numerical Relativity to the Rescue !

It's now possible to accurately calculate final stages of inspiral, merger, and subsequent ringdown

Can construct “hybrid” waveforms, e.g.:





Templates for Detection vs. Parameter Estimation

Could use a bank of templates in an enlarged parameter space

e.g. Buonanno, Chen, and Vallisneri, Phys. Rev. D 67, 104025 (2003)

$$h(f) = f^{-7/6} (1 - \alpha f^{2/3}) \theta(f_{cut} - f) \exp[i(\phi_0 + 2\pi t_0 f + \psi_0 f^{-5/3} + \psi_3 f^{-2/3})]$$

Analytically calculate
 α to maximize SNR

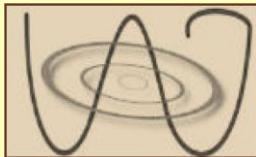
Parameters of the search

This can match various waveform models rather well

In practice, post-Newtonian waveforms also work pretty well for detecting a wide range of physical waveforms

For high masses, “effective one-body” (EOB) templates work well, especially when tuned using numerical relativity calculation

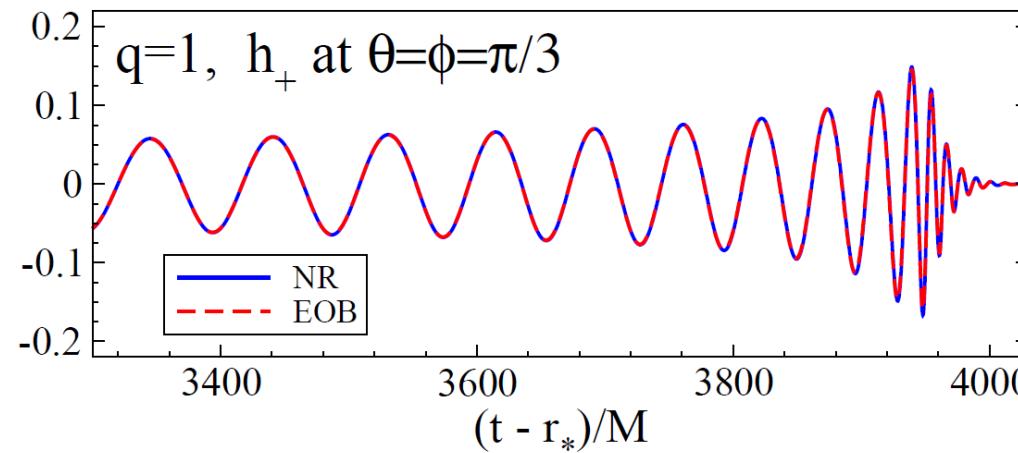
Once a signal is detected, can re-filter with true physical templates to extract physical parameters



Analytic Model Tuned Using NR

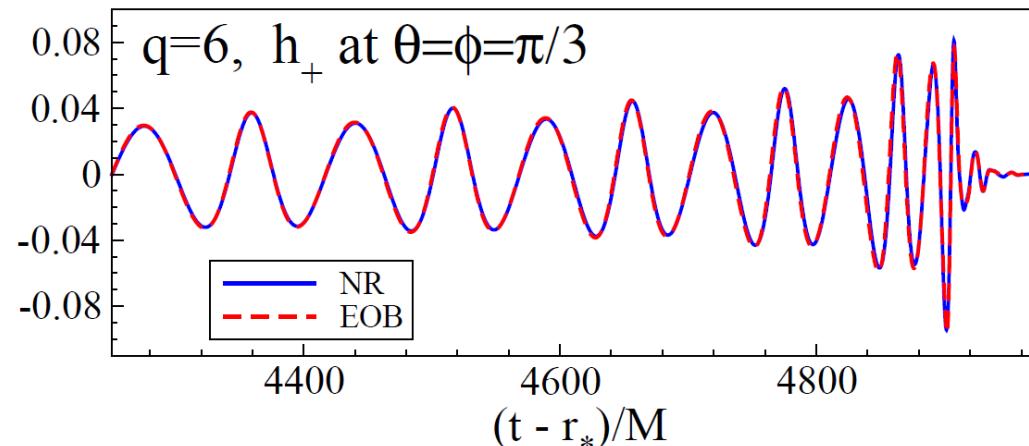
“EOBNR” : Effective One-Body model, with some parameters adjusted to match NR waveforms

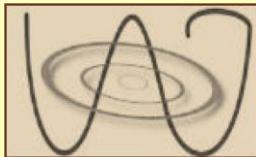
Equal mass
(non-spinning)



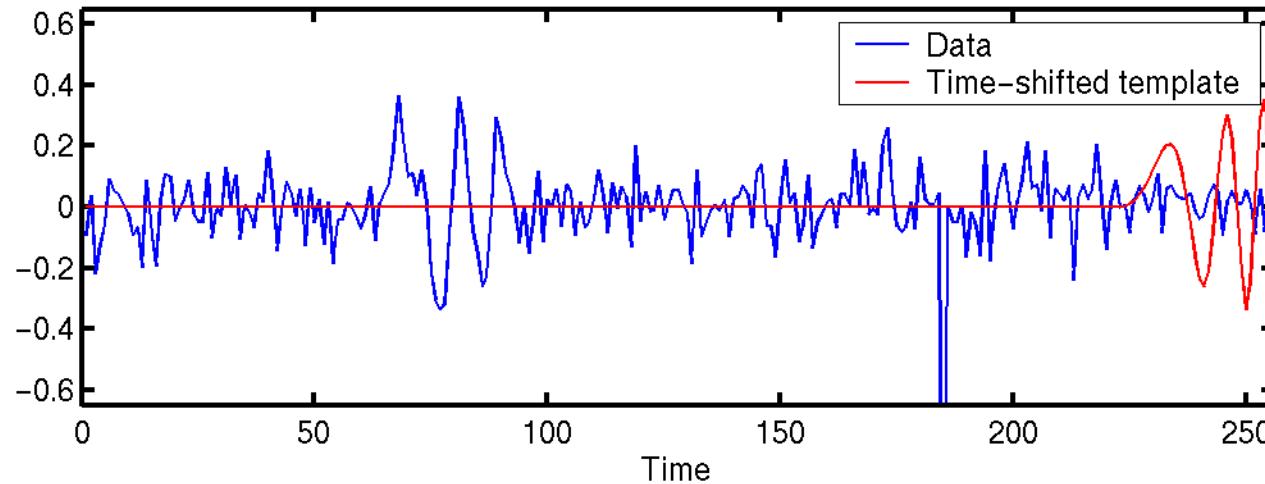
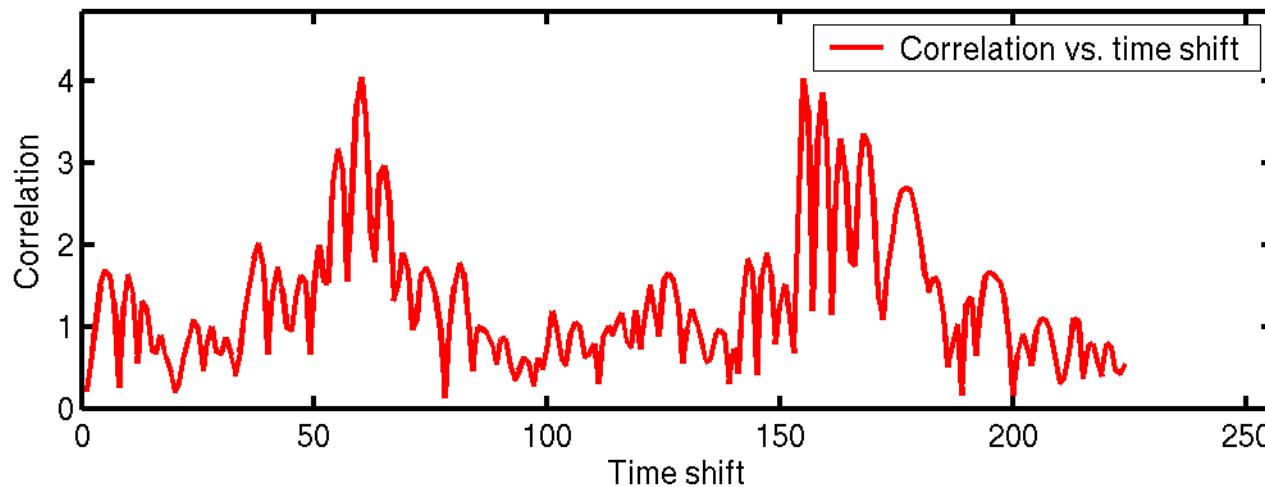
Pan et al., PRD 84,
124052 (2011)

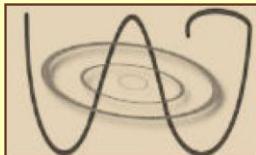
Mass ratio
6:1



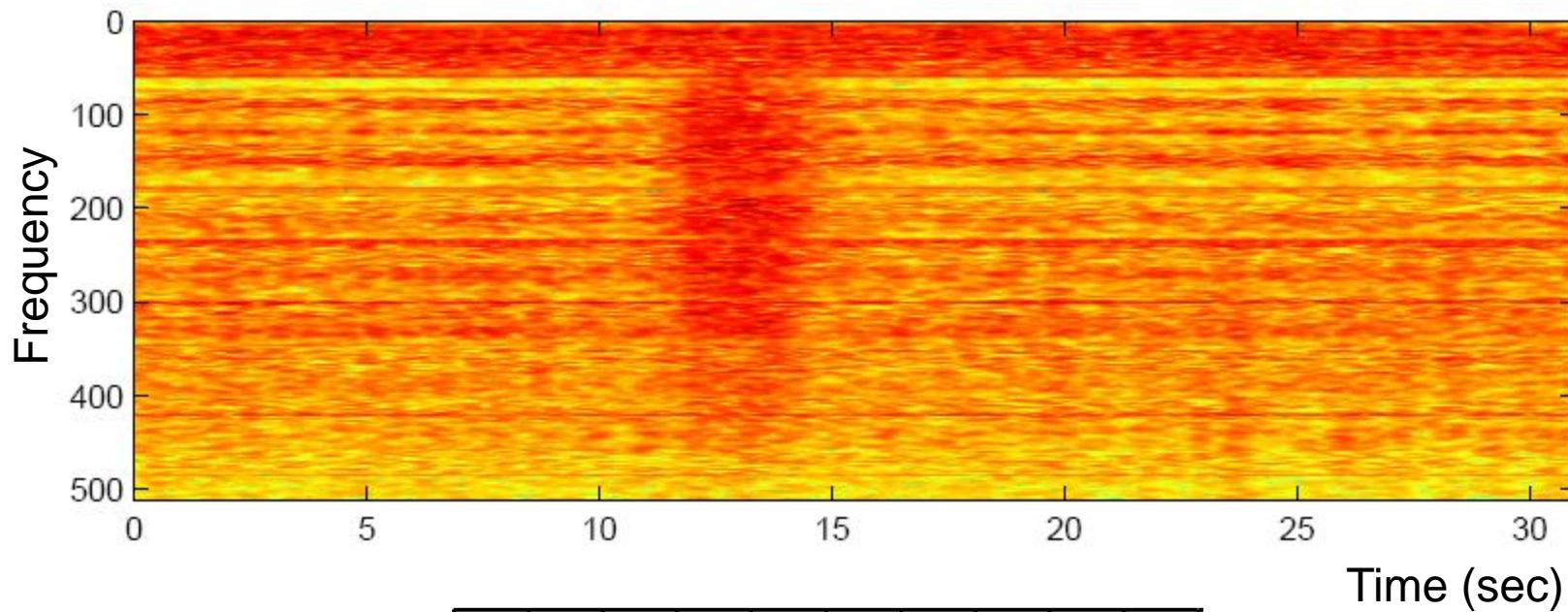


Matched Filtering Susceptibility to Glitches

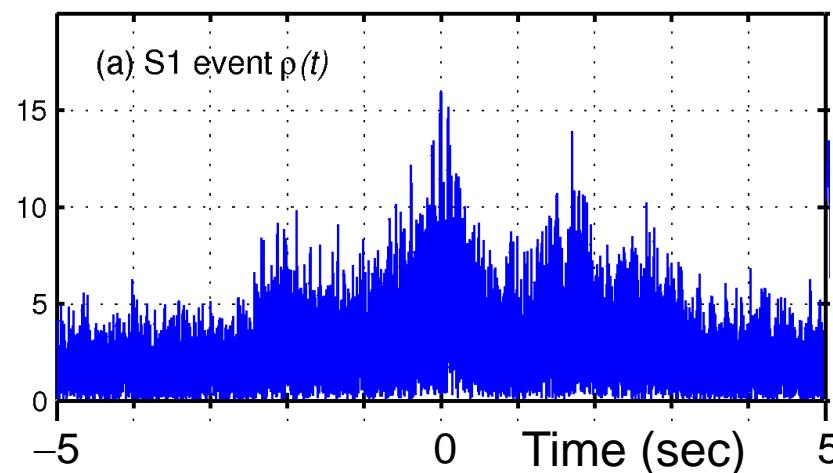


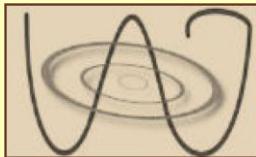


Dealing with Non-Stationary Noise



Inspiral filter output:



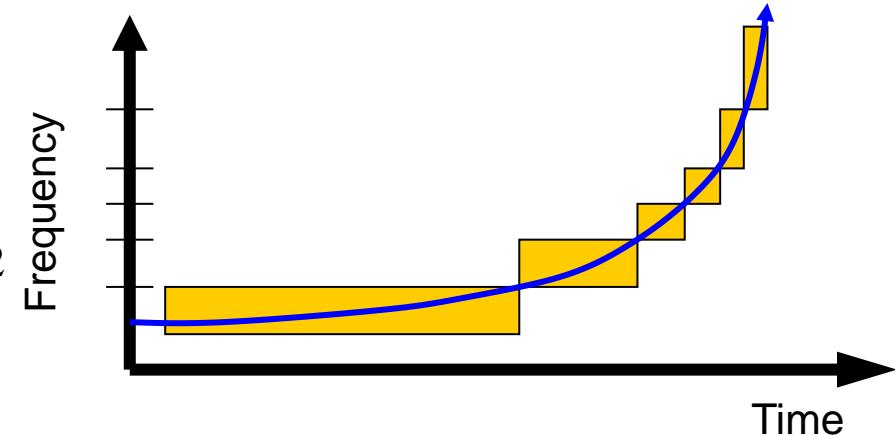


Waveform Consistency Tests

Chi-squared test

Divide template into p parts,
calculate

$$\chi^2(t) = p \sum_{l=1}^p \|C_l(t) - C(t)/p\|^2$$



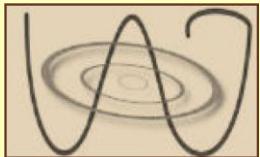
Can use χ^2 with ρ to form an “effective SNR”, e.g.:

$$\rho_{\text{eff}}^2 = \frac{\rho^2}{\sqrt{(\frac{\chi^2}{2p-2})(1 + \frac{\rho^2}{250})}}$$

$$\hat{\rho} = \begin{cases} \frac{\rho}{[(1 + (\chi_r^2)^3)/2]^{1/6}} & \text{for } \chi_r^2 > 1, \\ \rho & \text{for } \chi_r^2 \leq 1. \end{cases}$$

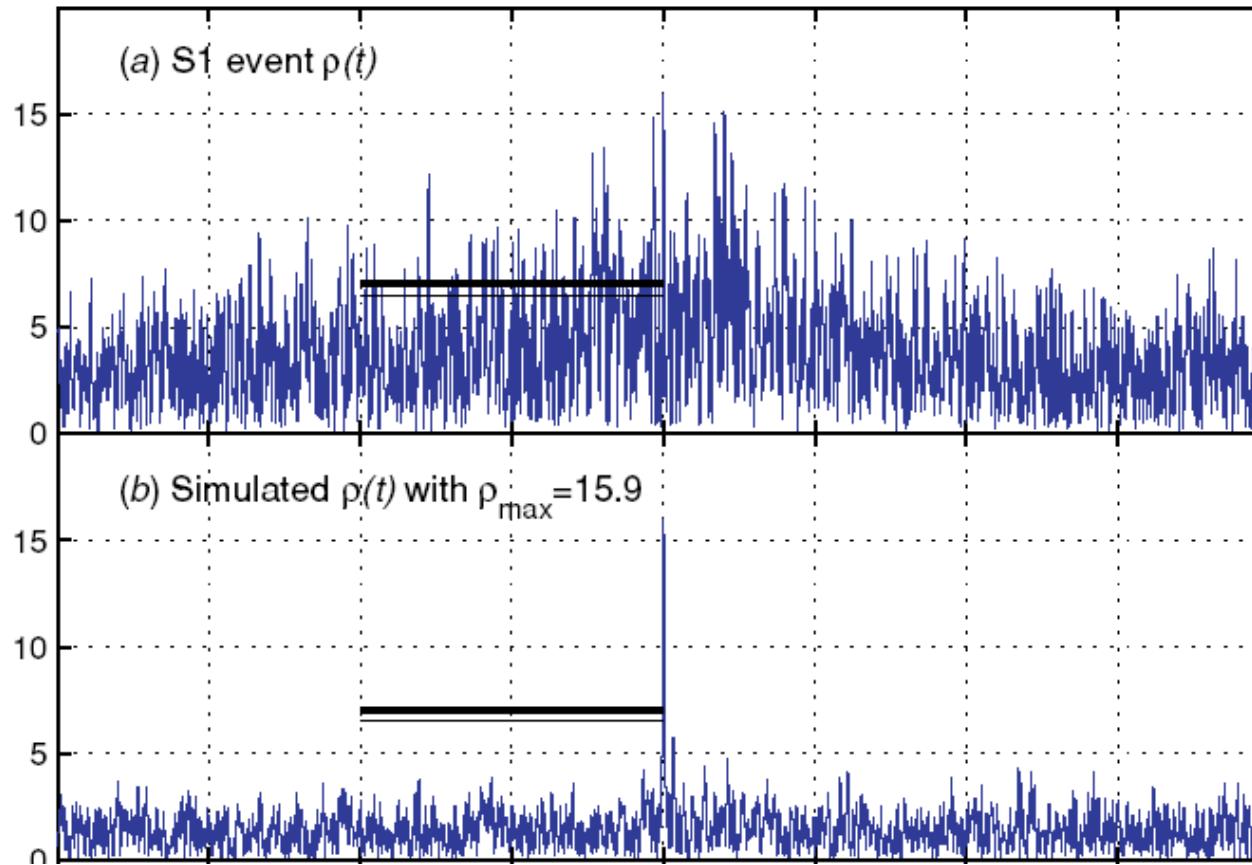
$$\rho_{\text{new}} = \begin{cases} \rho, & \chi^2 \leq n_{\text{dof}} \\ \frac{\rho}{\left[\left(1 + \frac{\chi^2}{n_{\text{dof}}}{}^{4/3}\right)/2\right]^{1/4}}, & \chi^2 > n_{\text{dof}} \end{cases}$$

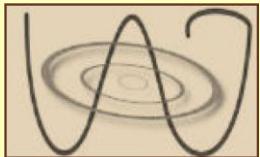
Empirical – to separate signals from background as cleanly as possible



Tests Using Filter Output(s)

e.g. time that $\rho(t)$ or $\chi^2(t)$ spends above some threshold



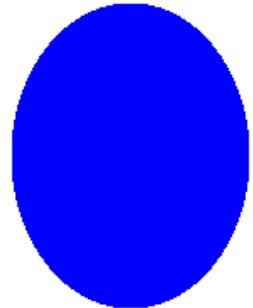
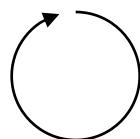


Continuous, Known Waveform: GW from Spinning Neutron Stars

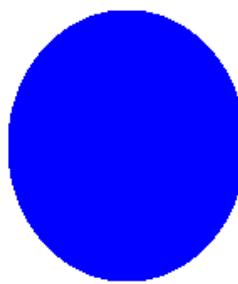
If not axisymmetric, will emit gravitational waves

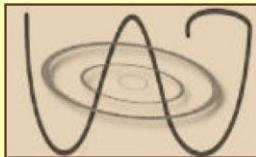
Example: ellipsoid with distinct transverse axes

Along spin axis:



From side:





Continuous GW Signals at Earth

Start with a sinusoidal signal with spin-down term(s)

Polarization content depends on orientation/inclination of spin axis

Amplitude modulation

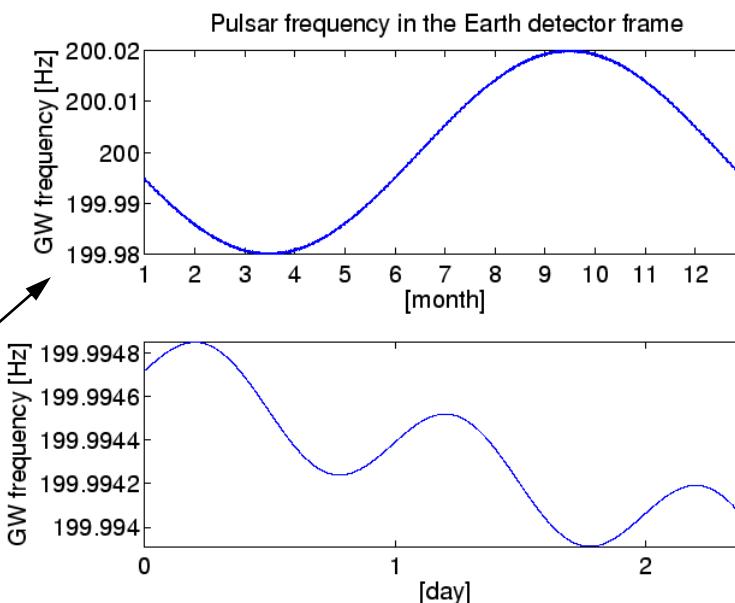
Polarization projection changes over a sidereal day

Doppler shift

$$\frac{\Delta f}{f} = \frac{\mathbf{v} \cdot \mathbf{n}}{c}$$

Annual variation: up to $\sim 10^{-4}$

Daily variation: up to $\sim 10^{-6}$

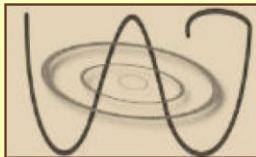


GW signals from binary systems are more complicated !

Additional Doppler shift due to orbital motion of neutron star

Varying gravitational redshift if orbit is elliptical

Shapiro time delay if GW passes near companion



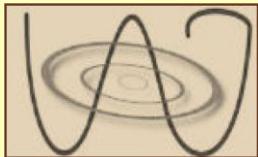
Search Methods for CW signals

Several cases to consider:

- Sky position and spin frequency known accurately
- Sky position and spin frequency known fairly well
- Sky position known, but frequency and/or binary orbit parameters unknown
- Search for unknown sources in favored sky regions
- Search for unknown sources over the whole sky

	<u>Candidates</u>
• Sky position and spin frequency known accurately	Radio pulsars
• Sky position and spin frequency known fairly well	X-ray pulsars
• Sky position known, but frequency and/or binary orbit parameters unknown	LMXBs
• Search for unknown sources in favored sky regions	Globular clusters
• Search for unknown sources over the whole sky	Galactic center
	Supernova remnants
	Unseen isolated neutron stars

Different computational challenges \Rightarrow Different approaches



Search for Gravitational Waves from Known Pulsars

Method: heterodyne time-domain data using the known spin phase of the pulsar

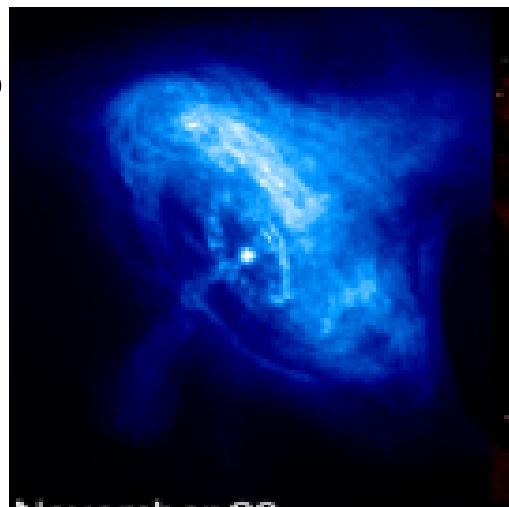
Requires precise timing data from radio or X-ray observations

Include binary systems in search when orbits known accurately

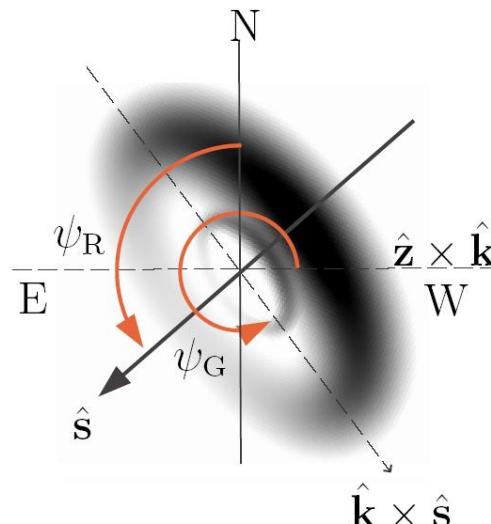
Exclude pulsars with significant timing uncertainties

Special treatment for the Crab and other pulsars with glitches, timing noise

Chandra image

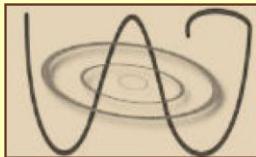


Model



$$h_0 < 2 \times 10^{-25}$$

Implies that GW emission accounts for $\leq 2\%$ of total spin-down power



Wide Parameter Space Searches

Method: matched filtering with a bank of templates

Parameters:

- Sky position
- Spin axis inclination and azimuthal angle
- Frequency, spindown, initial phase
- Binary orbit parameters (if in a binary system)

Can use a detection statistic, \mathcal{F} , which analytically maximizes over spin axis inclination & azimuthal angle and initial phase

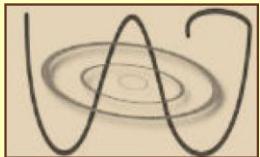
Even so, computing cost scales as $\sim T^6$

Detection threshold also must increase with number of templates

Check for signal consistency in multiple detectors

Problem: huge number of templates needed

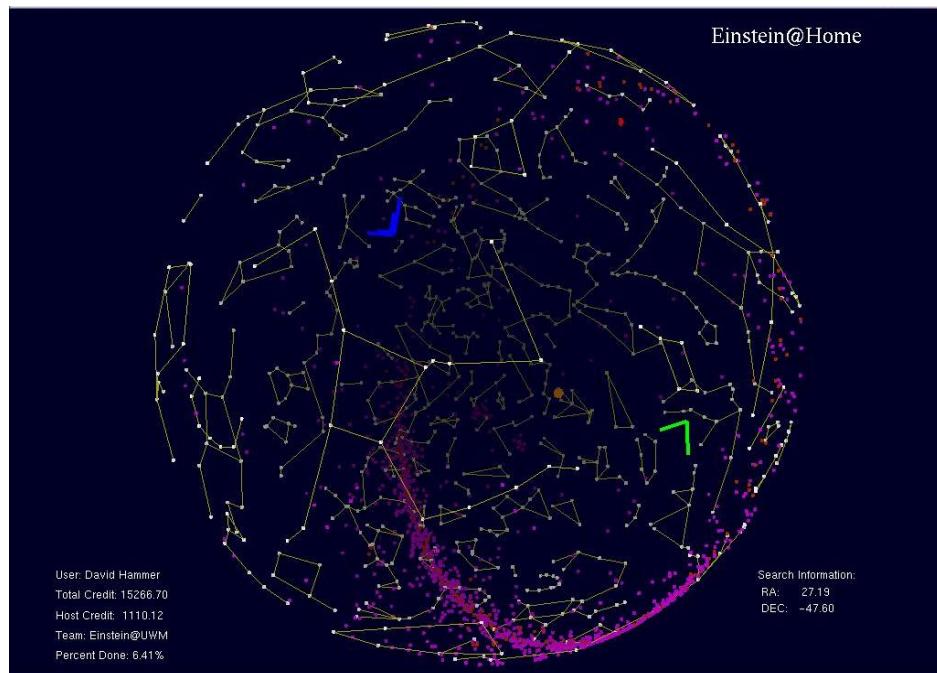
Even using clever semi-coherent analysis methods



Getting by with a Little Help from Our Friends

Public distributed computing project: Einstein@Home

Small bits of data distributed for processing;
results collected, verified, and post-processed



einsteinathome.org

Searching for CW signals
in LIGO+Virgo data

Also searching for
millisecond pulsars in data
from Arecibo, Parkes,
and the Fermi satellite

So far ~320,000 users, currently providing ~500 Tflops