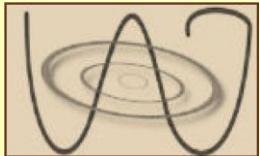


Gravitational-Wave Data Analysis: Lecture 1

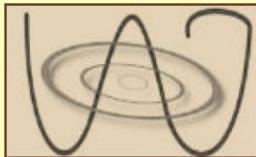
Peter S. Shawhan

Gravitational Wave Astronomy Summer School
May 28, 2012



Outline for Today

- ▶ **What gravitational wave (GW) data is like**
- ▶ **Characterizing noise**
- ▶ **Frequency-domain representation of data and signals**
- ▶ **Calibration**
- ▶ **Digital filtering basics**



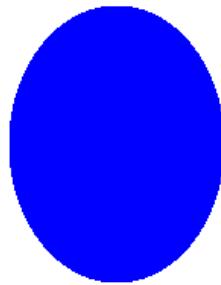
Gravitational Waves: What They Are

GWs are perturbations of the spacetime metric

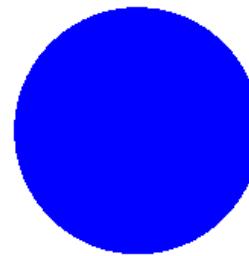
⇒ Change the effective distance between locally inertial points

According to GR, there are two polarization components

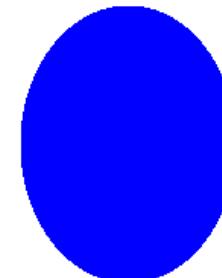
Wave can be a linear combination of polarization components



“Plus” polarization

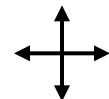


“Cross” polarization

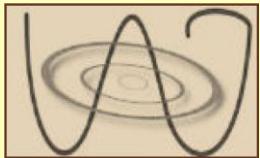


Circular polarization

...



These represent a time-dependent **strain** transverse to the direction the wave is traveling – i.e. $\mathbf{h}_+(t)$, $\mathbf{h}_\times(t)$



The Romance of Gravitational Waves

GWs can give us a unique view of astrophysical systems & events

GWs are powerful: can drive the dynamics of a system

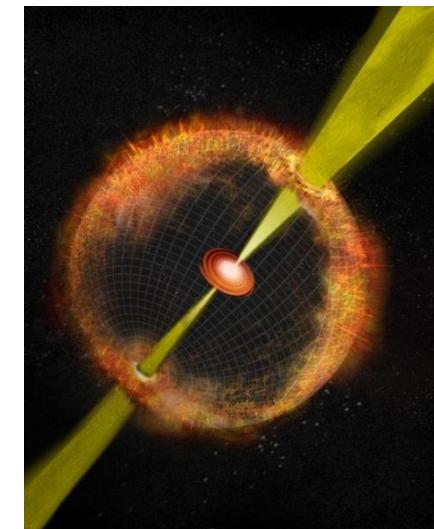
Not scattered by matter

⇒ probe the core engine of the event

Complementary to electromagnetic observations

Reveal “dark” systems such as black hole binaries

Enable tests of GR vs. other theories of gravity



Detecting GWs is a supreme challenge

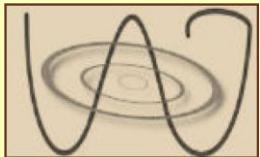
GWs are incredibly weak by the time they reach Earth –

Typical strain ~ **10⁻²¹** or even smaller !

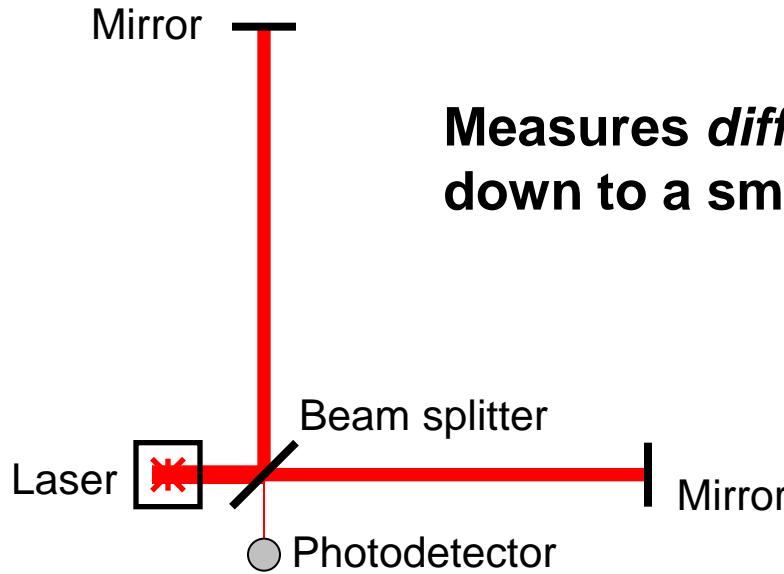
An unexplored frontier !

Can we really hope to detect them ?!?

Credit: Bill Saxton, NRAO/AUI/NSF



Response of a GW Interferometer

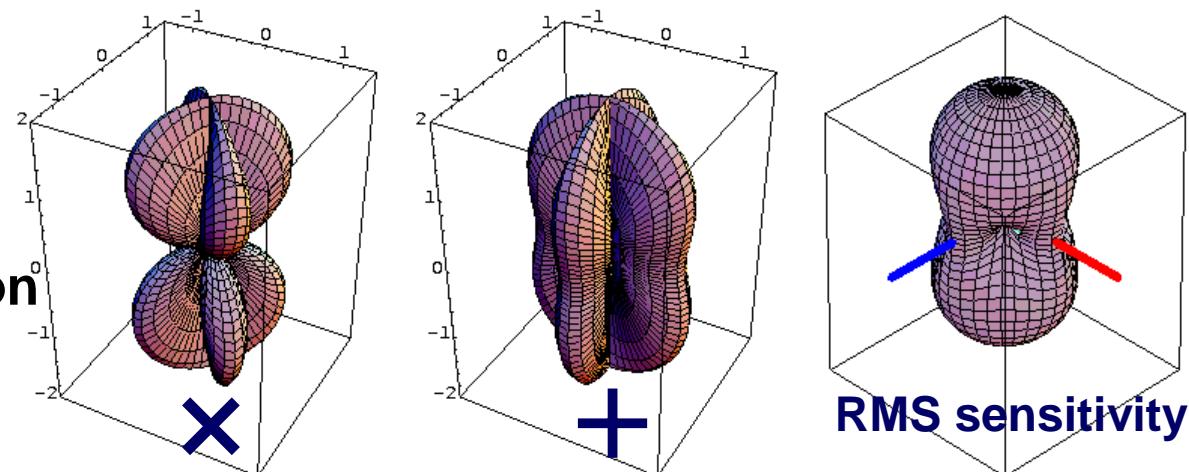


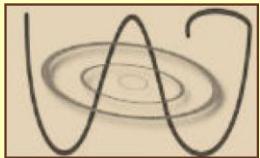
Measures *difference* in effective arm lengths down to a small fraction of a wavelength

In general, a linear combination:

$$h_{\text{det}}(t) = F_+ h_+(t) + F_x h_x(t)$$

Directional sensitivity depends on polarization in a certain (+,x) basis



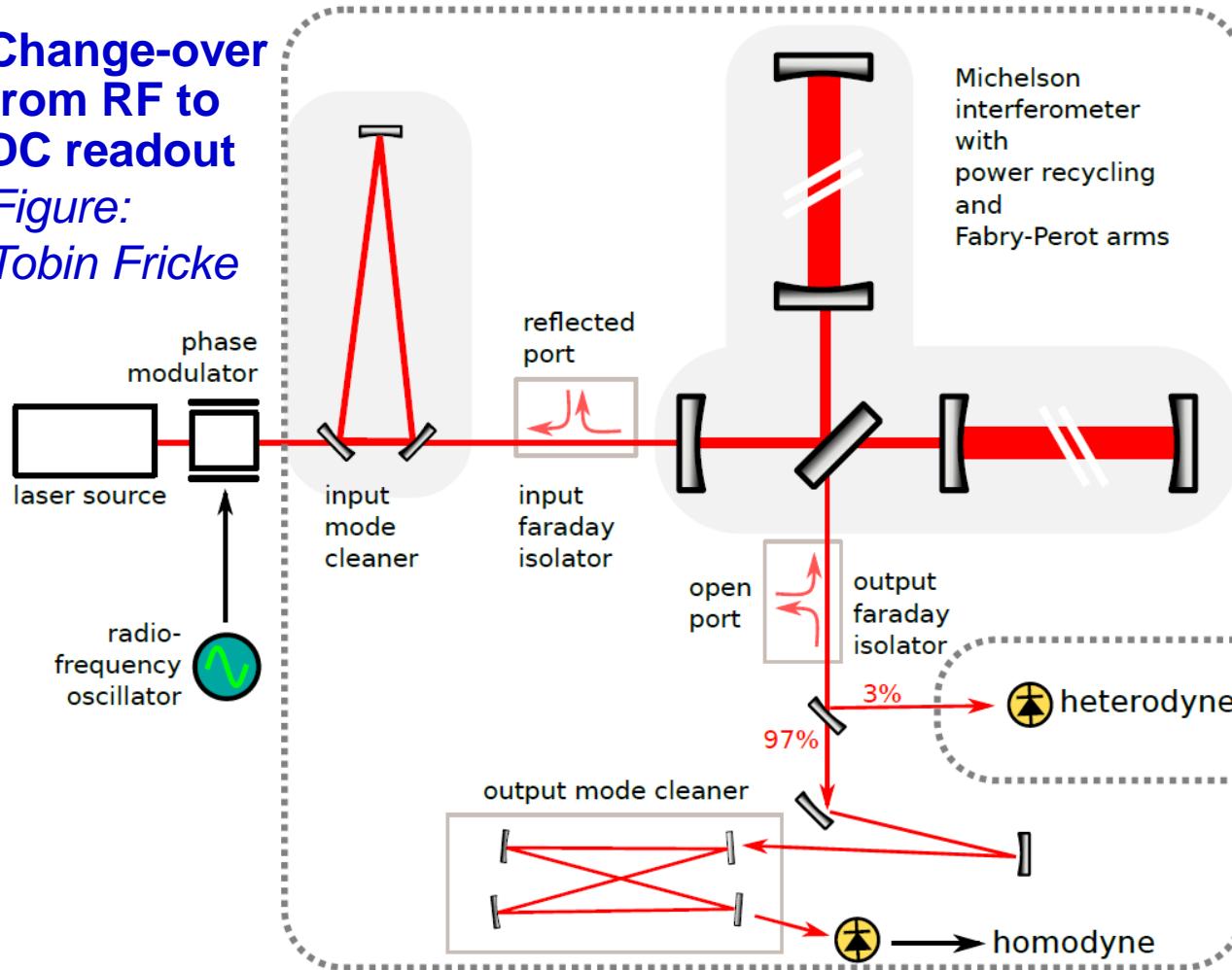


GW Detector Readout – Overview

The eLIGO interferometer

**Change-over
from RF to
DC readout**

*Figure:
Tobin Fricke*



Heterodyne (RF)
readout used for
initial LIGO/Virgo

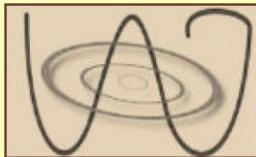
Modulate phase of
input light (33 MHz),
demodulate signal
measured by
photodiode

Perfect destructive
interference on avg

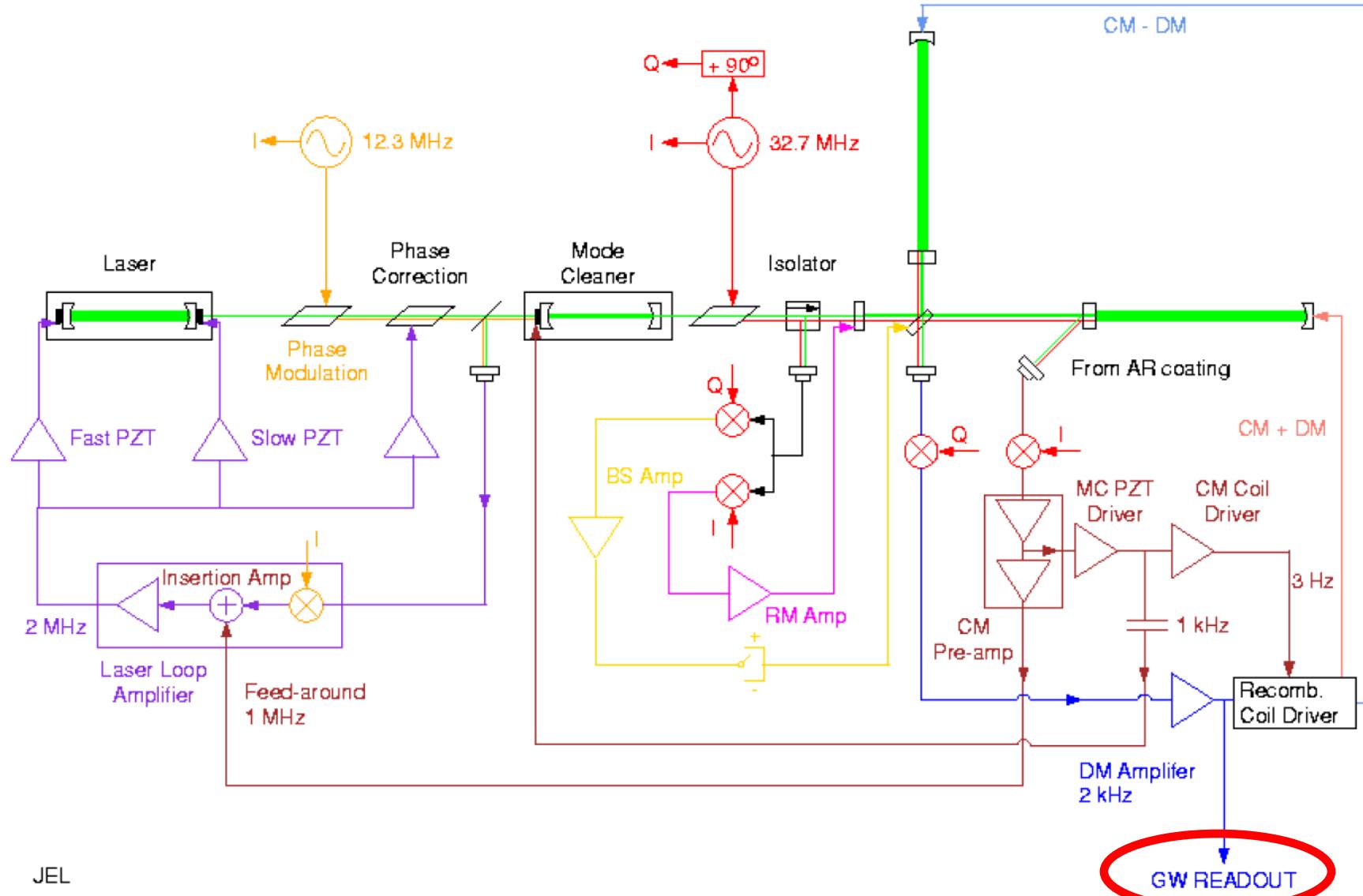
Homodyne (DC)
readout used for
Adv. LIGO/Virgo

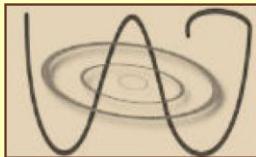
Measure intensity
variations

Arm lengths offset



LIGO Length Sensing and Control (RF Readout)





Gravitational-Wave Data

Data = Instantaneous estimate of strain for each moment in time

i.e. demodulated channel sensitive to arm length difference

That's not the whole story – we'll come back to calibration later

Digitized discrete **time series recorded in computer files**

$$(t_j, x_j)$$

LIGO and GEO **sampling rate**: 16384 Hz $\equiv f_s$

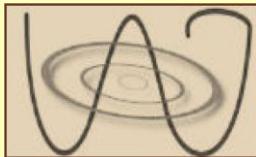
VIRGO sampling rate: 20000 Hz

Synchronized with GPS time signal

Common “frame” file format (*.gwf)

Many auxiliary channels recorded too

Total data volume: a few megabytes per second per interferometer



Leap Second Coming at End of June

<http://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat>

Paris, 5 January 2012

Bulletin C 43

To authorities responsible
for the measurement and
distribution of time

UTC TIME STEP
on the 1st of July 2012

A positive leap second will be introduced at the end of June 2012.
The sequence of dates of the UTC second markers will be:

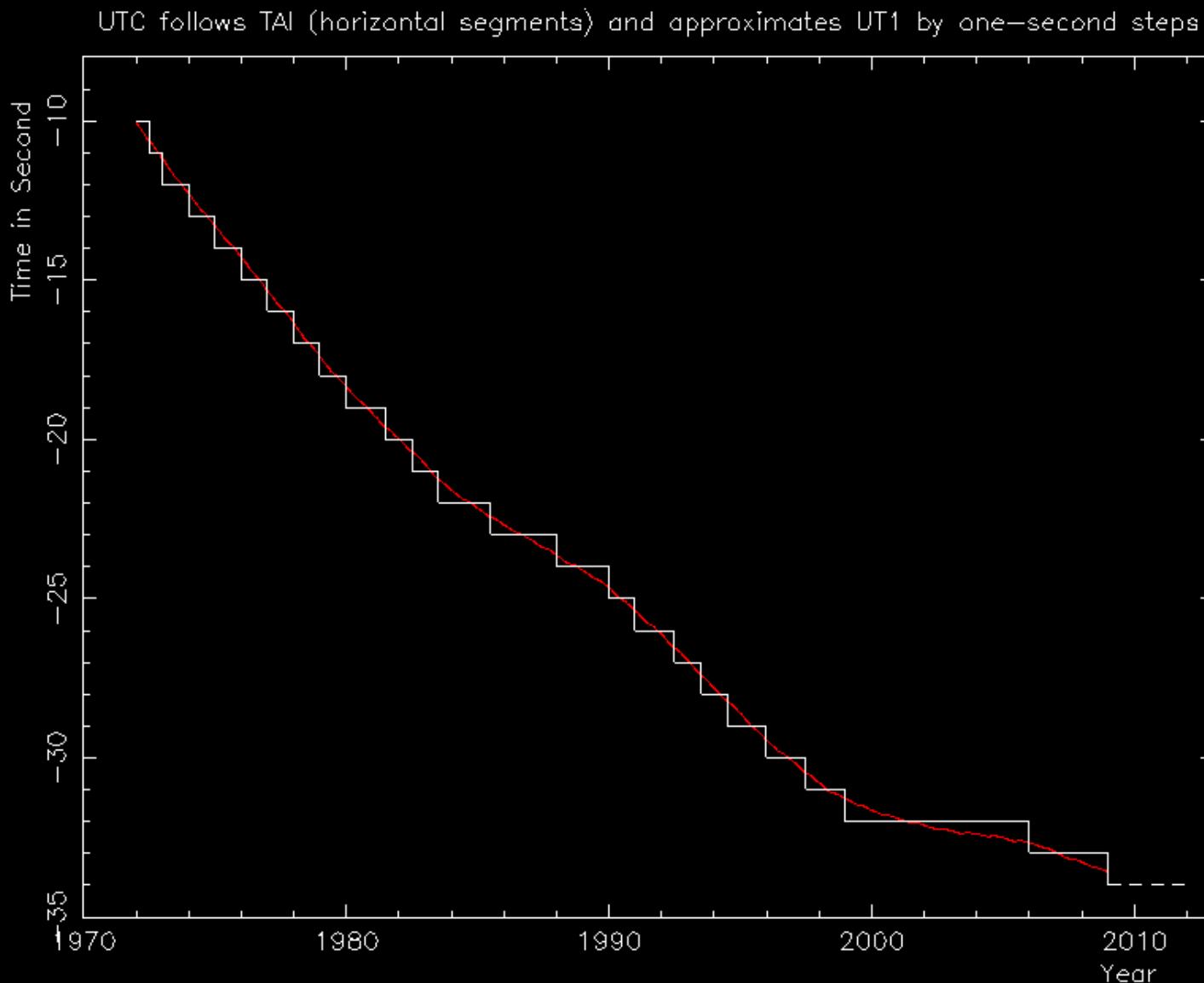
2012 June 30,	23h 59m 59s
2012 June 30,	23h 59m 60s
2012 July 1,	0h 0m 0s

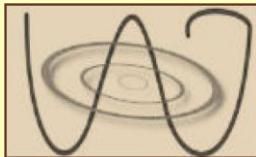
The difference between UTC and the International Atomic Time TAI is:

from 2009 January 1, 0h UTC, to 2012 July 1 0h UTC : UTC-TAI = - 34s
from 2012 July 1, 0h UTC, until further notice : UTC-TAI = - 35s

Leap seconds can be introduced in UTC at the end of the months of December or June, depending on the evolution of UT1-TAI. Bulletin C is mailed every six months, either to announce a time step in UTC or to confirm that there will be no time step at the next possible date.

Leap Seconds – Historical





Relevance of the Sampling Rate

Is 16384 Hz a high enough sampling rate ?

The Sampling Theorem:

Discretely sampled data with sampling rate f_s can completely represent a continuous signal which only has frequency content below the **Nyquist frequency**, $f_s / 2$

GW signals of interest to ground-based detectors typically stay below a few kHz

e.g. binary neutron star inspiral reaches ISCO at ~1 to 1.5 kHz

Neutron star f -modes: ~3 kHz

Black hole quasinormal modes: ~1 kHz for $10 M_\odot$

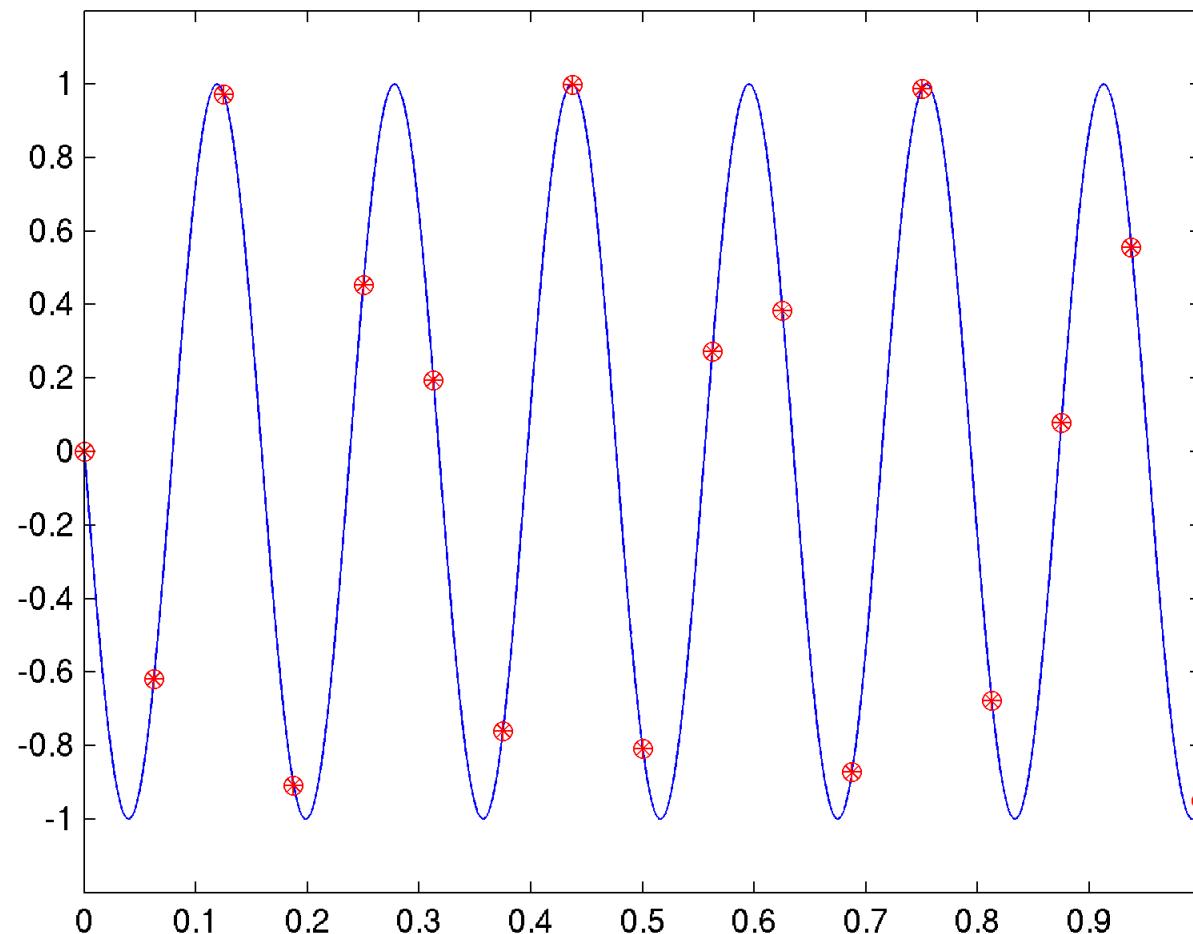
Some core collapse supernova signals could go up to several kHz

What if the signal extends above Nyquist frequency?

Higher frequencies are “aliased” down to lower frequencies

Aliasing

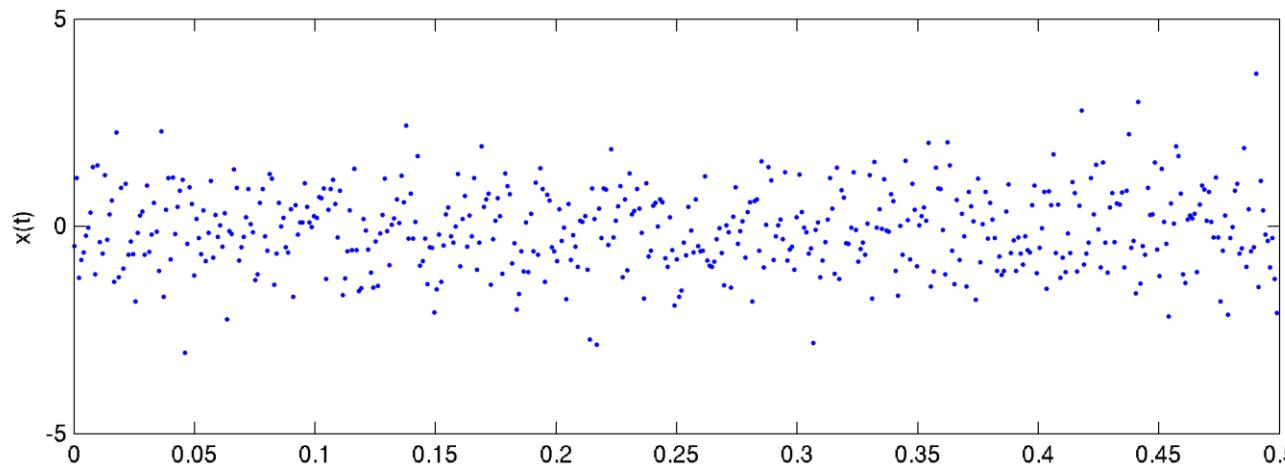
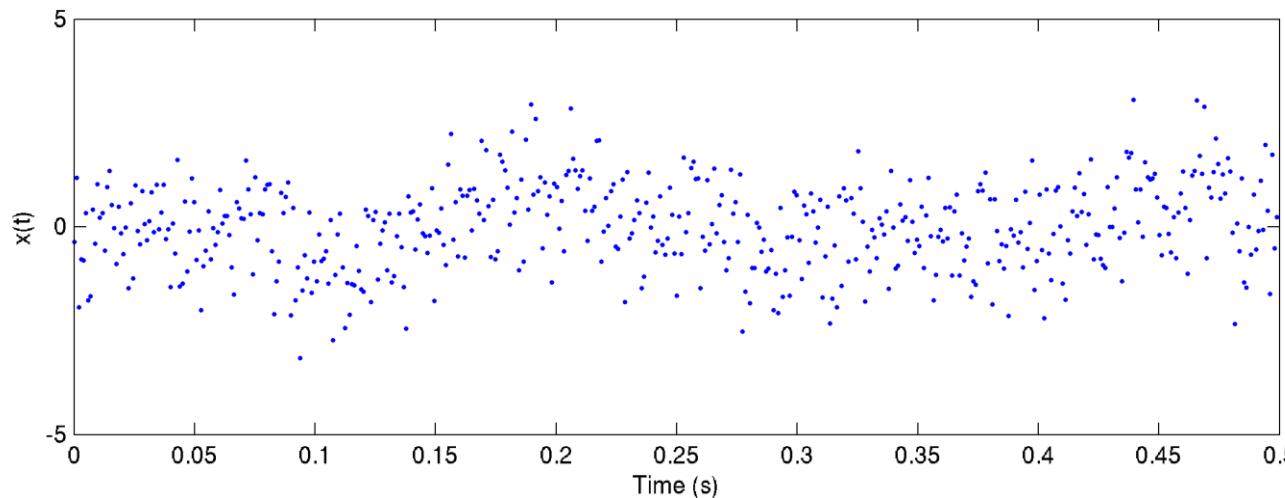
$f_s = 16 \text{ Hz}$; signal frequency = 9.7 Hz

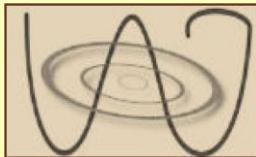




Characterizing Noise

Noise is random, but its *properties* can be characterized





Possible Properties of Noise

Stationary : statistical properties are independent of time

Ergodic process: time averages are equivalent to ensemble averages

Gaussian : A random variable follows Gaussian distribution

For a single random variable,
$$p(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp\left[-\frac{1}{2}\frac{(x - \mu_x)^2}{\sigma_x^2}\right]$$

More generally, a set of random variables (e.g. a time series) is Gaussian if the joint probability distribution is governed by a covariance matrix

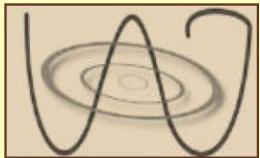
$$C_{xij} := \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

such that

$$p(x_1, x_2, \dots, x_N) = \frac{1}{(2\pi)^{N/2} \sqrt{\det C_x}} \exp\left[-\frac{1}{2} \sum_{i,j=0}^{N-1} C_{xij}^{-1} (x_i - \mu_{xi})(x_j - \mu_{xj})\right]$$

White : Signal power is uniformly distributed over frequency

⇒ Data samples are uncorrelated



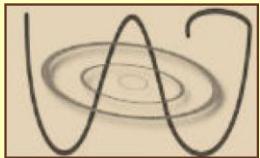
Frequency-Domain Representation of a Time Series

Fourier transform

$$\begin{aligned}\widetilde{x}(f) &= \int_{-\infty}^{\infty} dt \, x(t) e^{-i2\pi ft} \\ \Rightarrow \quad x(t) &= \int_{-\infty}^{\infty} df \, \widetilde{x}(f) e^{i2\pi ft}\end{aligned}$$

A linear function, complex in general

Defined for all positive *and* negative frequencies



Frequency-Domain Representation of a *Discrete, Finite* Time Series

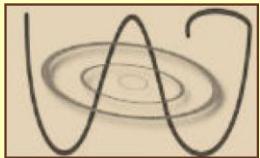
Time series x_j with N samples at times $t_j = t_0 + j \Delta t$

Discrete Fourier transform

$$\begin{aligned}\tilde{x}_k &:= \sum_{j=0}^{N-1} x_j e^{-i2\pi jk/N} \\ \Rightarrow x_j &= \frac{1}{N} \sum_{k=-N/2}^{N/2-1} \tilde{x}_k e^{i2\pi jk/N}\end{aligned}$$

Frequency spacing is **inversely proportional to N**

Efficient way to calculate complete discrete Fourier Transform:
Fast Fourier Transform (FFT)



Power Spectral Density

Parseval's theorem:

$$\int_{-\infty}^{\infty} dt |x(t)|^2 = \int_{-\infty}^{\infty} df |\tilde{x}(f)|^2$$

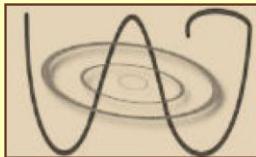
⇒ Total energy in the data can be calculated in either time domain or frequency domain

$|\tilde{x}(f)|^2$ can be interpreted as energy spectral density

When noise (or signal) has infinite extent in time domain, can still define the power spectral density (PSD)

$$\lim_{T \rightarrow \infty} \frac{1}{T} |\tilde{x}_T(f)|^2$$

Watch out for one-sided vs. two-sided PSDs



Estimating the PSD

Generally we need to determine the PSD empirically, using a finite amount of data

Simplest approach: FFT the data, calculate square of magnitude of each frequency component – this is a **periodogram**

For stationary noise, one can show that the frequency components are statistically independent

This estimate is unbiased (has the correct mean), but has a large variance – so average several periodograms

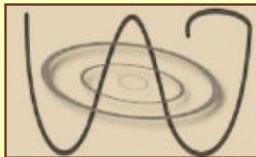
Alternately, smooth periodogram; give up frequency resolution either way

Generally apply a “window” to the data to avoid **spectral leakage**

Leakage arises from the assumption that the data is periodic!

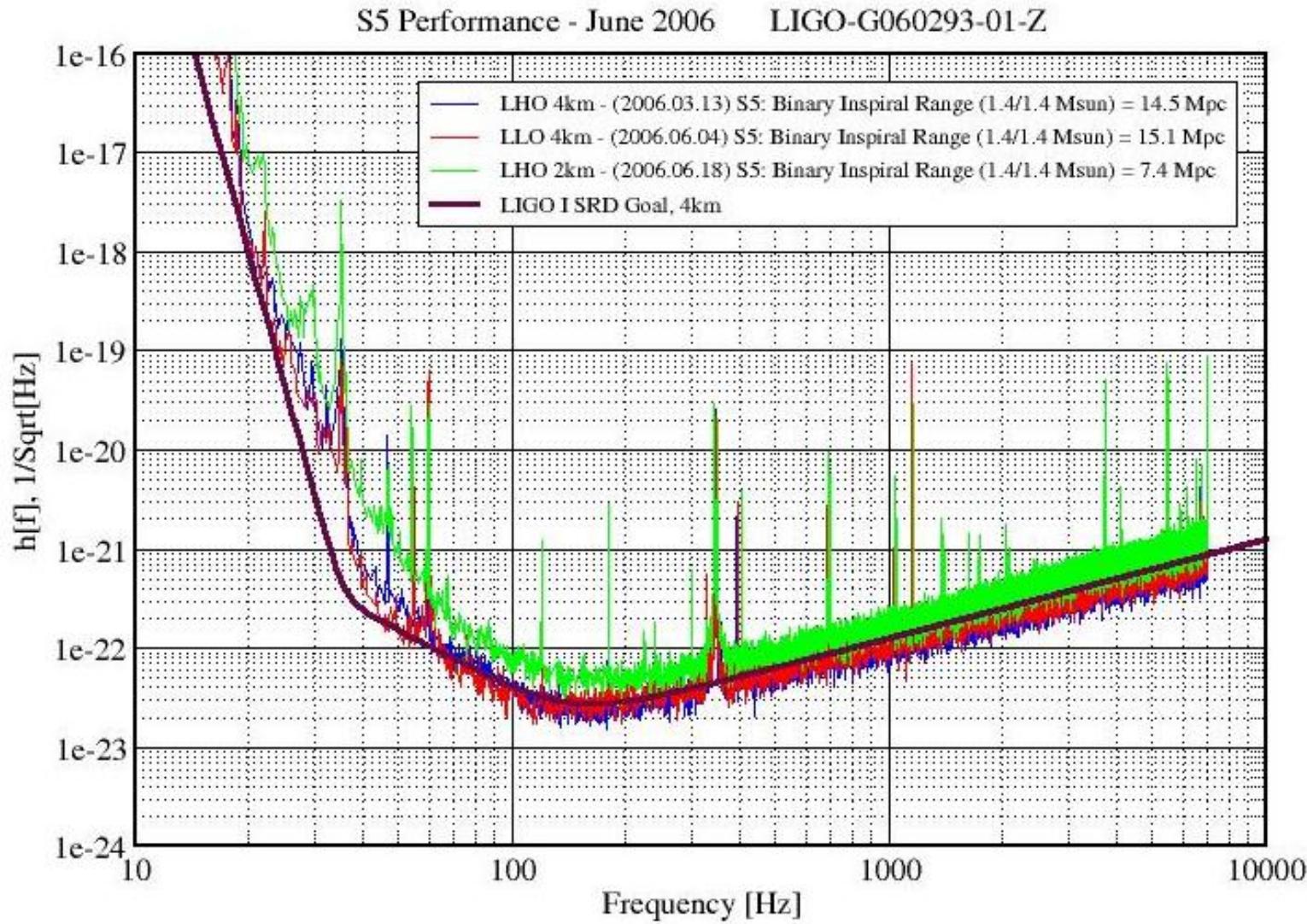
Tapered window forces data to go to zero at ends of time interval

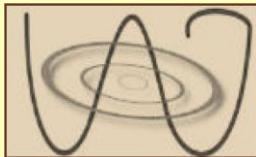
Welch’s method of estimating a PSD averages periodograms calculated from windowed data



Amplitude Spectral Density of LIGO Noise

Strain Sensitivity for the LIGO 4km Interferometers





Interpretation of Time Series Data

Recorded data values are *not* simply proportional to GW strain

A linear system, but that does not guarantee proportionality !

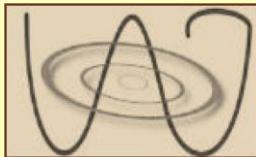
Frequency-dependent amplitude and phase relation (i.e. transfer function)

Instrumental and practical reasons

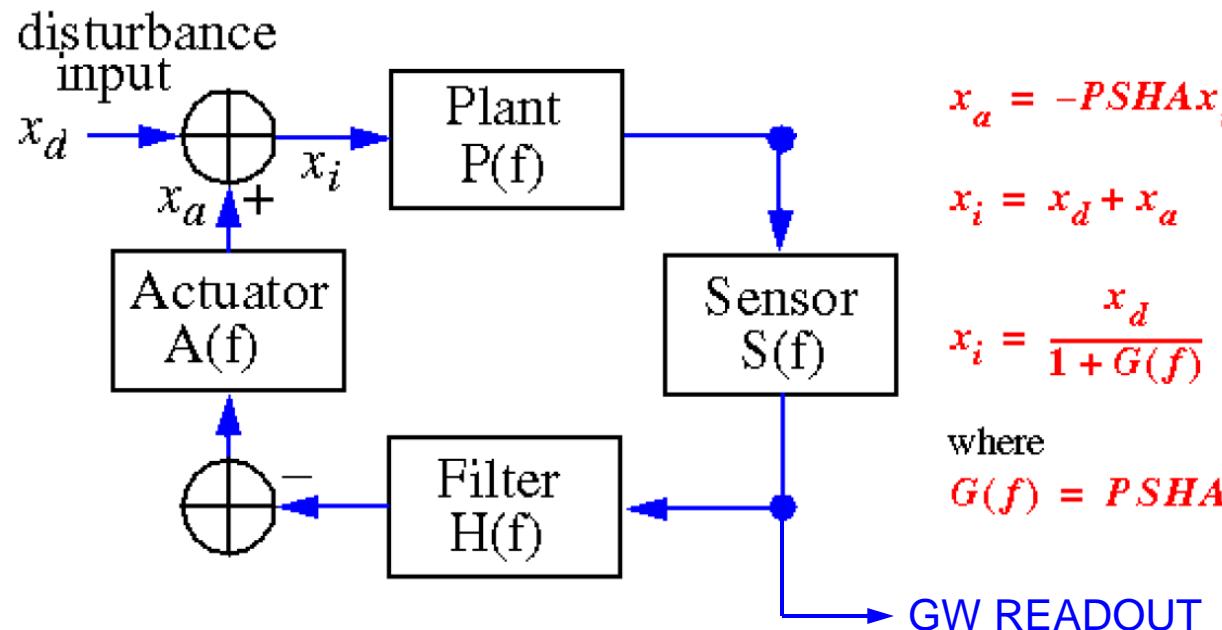
⇒ **Raw time series is a distorted version of GW strain signal**

e.g. a delta-function GW signal produces an output with a characteristic shape and duration (“**impulse response**”)

Want to recover actual GW strain for analysis



Calibration



Monitor $P(f)$ continuously with “calibration lines”

Sinusoidal arm length variations with known absolute amplitude

Apply frequency-dependent correction factor to get GW strain

$$h = (\text{GW READOUT}) \times \frac{1 + G(f)}{P(f) S(f)}$$

Basics of Digital Filtering

A filter calculates an output time series from a linear combination of the elements of an input time series

Finite Impulse Response (FIR) filter

Calculated *only* from the input time series

Typical form: $y_i = b_0x_i + b_1x_{i-1} + b_2x_{i-2} + \dots + b_{N-1}x_{i-N}$

Infinite Impulse Response (IIR) filter

Also uses prior elements of the output time series

e.g. $y_i = b_0x_i + b_1x_{i-1} + b_2x_{i-2} + \dots + b_{N-1}x_{i-N} + a_1y_{i-1} + a_2y_{i-2} + \dots$

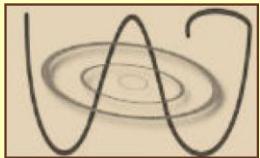
Choice of coefficients determines transfer function

Many filter design methods, depending on goals

Causality and phase lag

Linear-phase and zero-phase filters

Watch for transient in filter output at beginning of data stream!



Applications of filtering

High-pass, low-pass, band-pass, band-stop, etc.

Anti-aliasing for down-sampling

Low-pass filter to cut away signal content above new Nyquist frequency

Whitening / Dewhitening

Time for some exercises ...

Based on Matlab – but the UTB laptops have Octave

Work by yourself or with a partner

How to get help:

- Ask me or a neighbor

- Use Matlab's/Octave's built-in help

- Consult a book – I have one here

The items in the handout are intended as a guide

- Feel free to explore !