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1. Hamilton’s equations

As discussed in class (see Breno’s notes from 2-26 and 3-3) phase space is a 2n dimen-
sional manifold with a “symplectic structure”, i.e. a closed non-degenerate 2-form Ω,
and Hamilton’s equations take the form iXH

Ω = −dH, where H is the Hamiltonian
and XH is the Hamiltonian vector field. Show that this is equivalent to the standard
form of Hamilton’s equations you’d find in Goldstein in terms of qi and pi, where these
are coordinates on phase space such that Ω = dpi ∧ dqi (summation on i implicit).

[Background info: If the phase space is the cotangent bundle T∗Q of a configuration
space Q, then Ω = dθ, where θ is the canonical 1-form. In local coordinates qi for Q,
with induced coordinates pi for the one-forms, we have θ = pidqi. (In fact even if the
phase space is not a cotangent bundle, Darboux’s theorem tells us that locally there
exist coordinates for which Ω = dpi ∧ dqi.)]

2. Stokes’ theorem

Show that the Stokes and divergence theorems in 3d vector calculus are special cases
of the Stokes theorem for differential forms,

∫
R dω =

∫
∂R ω.

3. Magneto-hydrodynamics

A common approximation for a plasma is a fluid with a definite four-velocity u at
each point of spacetime. For a perfectly conducting plasma, the electric field vanishes
in the rest frame of the plasma, i.e. iuF = 0, were F = dA is the electromagnetic
field strength 2-form and A is the vector potential. This is called an “ideal plasma”.

(a) Show that under these assumptions the Lie derivative of F along the fluid flow
vanishes, i.e. LuF = 0. This is the famous “frozen-in theorem” of plasma physics.
(Note that it is a metric-independent statement, hence holds, for example, for a
relativistic plasma in a rotating black hole spacetime.)

(b) The frozen-in theorem gets its name from the fact that the magnetic flux is locked
to the flow, in the sense that the flux through a loop is unchanged as the loop
is carried along by the flow. Using the previous result show that this condition
indeed holds .

(c) The magnetic helicity density of a plasma is the 3-form h = A ∧ F , and the
helicity in a spatial region V3 is defined by H =

∫
V3

h. In the rest of this problem
you will show that under certain circumstances the helicity H is a conserved
quantity.

i. Show that for the electromagnetic field in an ideal plasma we have dh = 0.
(Hint: This would not be true if spacetime had more than four dimensions.)

ii. Using the previous result, Stokes’ theorem tells us that
∮
∂V4

h = 0 for any
four-dimensional region V4. Since this conclusion holds in any gauge the



integral must be gauge invariant. Show this directly by making a gauge
transformation A→ A + dλ.

iii. Suppose V4 is the region swept out by a three-dimensional region V3 as it
is translated in time from t1 to t2. The boundary ∂V4 then consists of the
spacelike pieces V3(t1) and V3(t2), and the timelike piece consisting of ∂V3

translated through time. The contributions from the spacelike boundaries
give H(t2) −H(t1), so we get a conservation of helicity in V3 provided the
integral over the timelike boundary vanishes. This is the case if the field
is zero there, e.g. if the boundary is at infinity and the field falls off fast
enough, but it can also be true in a finite region even if the field does not
vanish. For example the region could be the interior of a tokamak. Show
that the timelike boundary contribution vanishes if the normal component
of the magnetic field and the parallel component of the electric field vanish
at the boundary of the three volume ∂V3. (For extra credit, remind me why
these are reasonable boundary conditions if the boundary is a conductor!)

iv. Show that H is gauge invariant provided the boundary condition discussed
in the previous part holds.


