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'INTRODUCTION

In addition to providing information about the energy of kinks, thermal fluctuations of
steps on a vicinal surface provide a rich source of insight into the microscopic atomic
processes which underlie the fluctuations. In recent years it has become possible to make
quantitative measurements of these fluctuations using STM (scanning tunneling microscopy),
LEEM (low-energy electron microscopy), and REM (reflection electron microscopy). The
fluctuations of the steps can be viewed as a form of Brownian motion (viz. random motion of
a heavy entity due to thermal fluctuations of light particles) and can be analyzed using a
capillary-wave approach and Langevin formalism. From this analysis one can deduce the
key macroscopic parameters of step stiffness, step-step interaction strength, and mobility
which govern the macroscopic behavior of the steps. These parameters can then be applied
to situations far from equilibrium or in which the steps are driven by some external force.
Furthermore, the analysis of nearly-straight steps can be adapted to treat nearly-circular steps
and thereby describe the Brownian motion of monolayer clusters of atoms or vacancies on
surfaces, for which quantitative experimental data has also been obtained recently. In this
short review we gather together, integrate, and in some cases amplify results from several
previous papers. We also summarize and catalog the relevant experimental results.

"EQUILIBRIUM FLUCTUATIONS OF ISOLATED STRAIGHT STEPS

For a theorist it is easy to model the equilibrium fluctuations of steps by performing
Monte Carlo simulations within the SOS (solid-on-solid) model. In this model, one assigns
to each site i on a square net (2D lattice) an integer hy, which denotes the height (in units of
the lattice constant) at that site. The Hamiltonian is then a characteristic energy € times the
sum over all nearest neighbor pairs i,j of the height difference Ihj - hjl. Thus, both the
energy of a single-height step per lattice constant along a principal direction and the energy of
a simple kink in such a step is €, while the energy of an isolated adatom or vacancy is 4.
For specificity, we shall assume that the step runs along the y direction, so that discursions
perpendicular to it are in the x direction (sometimes called “Maryland” notation), as depicted
in Fig. 1. To create such a step, one can simply apply screw periodic boundary conditions in
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Fig. 1. A step in the 308 model at temperature kp'T/e = 0.9, The concentration of adatoms and of vacancies

is about 0.02/€, where € is the area of the surface unit cell. From Bartelt er ol (1994a), with permission.

the 4 direction: hy,p, = by+ 1, where Ly is the upstairs-pointing vector spanning the
lattice, projected in the terrace plane.

In Monte Carlo propagation of this lattice system, one can graphically watch how the
step configuration changes as adatoms or vacancies attach to or detach from the step edge. In
LEEM, REM, or 8TM experiments, one either lacks the resolution to observe atomic events
or these events happen so rapidly that they cannot be observed individually. The challenge,
then, is to deduce as much as possible about these atomic processes from observations of the
step configurations alone. To do so, we apply capillary wave analysis.  As the
“wavelengths” (characteristic size in the § direction) of the equilibrium fluctuations increase,
50 do their amplimdes (in %) and their duration, as shown below.,

There are three well-characterized limiting cases, denoted hereafier EC, TD, and PD
(Bartelt er al., 1992, 1994a), In EC [2D] evaporation/condensation, or attachment/
detachment, of atoms and/or vacancies at the step edge limit the production and decay of
fluctuations. Once the adatom or vacancy is free of the step, it is assumed to be instantly
equilibrated into a 2 “gas” of “carriers” on the terraces. In TD, diffusion across the wrrace
is the limiting process, leading to slower behavior and a non-uniform distribution of carriers
on the terrace that decays exponentially toward the thermal value for a flat surface. The
slowest process is PD: periphery (or edge) diffusion. Here motion along the step edge limits
the rate of the healing of fluctuations.

To make quantitative progress, we use a Langevin formulation. This amounts 1o an
overdamped harmonic oscillator driven by a noise term (Kardar, 1994). The generic form is

'

dx(y,t)/ ot = —restoring " force” + n(y, 1) (h
While one might hope that the restoring force [divided by “mass™] is Hnear in x(v,7) with a
prefactor 1! from dimensional arguments, in general the behavior is more complicated,
involving a convolution over v. However, by performing a capillary-wave analysis, i.c.
writing x(y.4) as Zqexpliqy)xy(t), we find

o
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where £(q) is given below. We seek the behavior of the [measurable! (Bartelt ef al., 1993;
Bartelt and Tromp, 1996; Pai et al., 1996)] autocorrelation function Gg(t-t') of the capillary
modes:

Git-t)= <§x${i )~ xqu"yg:> ?Qx{{hw -2{x, (0, () = A1 - eV 3)
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From equipartition arguments, one finds that the prefactor A = 2k]3T/Bq2Ly depends
simply on known quantities, except perhaps the step stiffness B, which can thus be
determined from this relation or checked with previous independent determinations. [The
stiffness is the coefficient of the integral of (1/2)(9x/dy)?2 in the Hamiltonian of the step; B®)
= B(8) + B"(8), where P(0) is the free energy per length of a step.] The q2 dependence does
not depend on the limiting case. On the other hand, by integrating eqn. (2) and computing
(xq(t) x4(t")), we find

7 7' = Ba*f(q)/ 2k,T; 7 f(g)=2r,, 4D, Q%gl, 2T 4* @

“for the cases EC, TD, and PD, respectively. The subscripts su and st are abbreviations for
surface and step, respectively. The lattice spacings a, and ay are in the unit spacings in the 13
and the § directions, respectively, and Q = a,ay is the area per atom (i.e. of the surface unit
cell). The mobility or friction coefficients can be related to microscopic times:

Ty=a2a/1, “and Ty=alay, )

" where 1, is the mean time between successive attachment (or successive detachment) events,
and T is the mean time between successive hops in the same direction along the step edge.
Similarly, on a square lattice of sites Dgy = a2/4ty, where ty is the time between hops, and cgy
is the sum of the adatom and vacancy concentrations far from the fluctuating step. [Bartelt e
al. (1994a) also show how in Monte Carlo simulations one can change TD behavior to EC—
except at very small g—by including a [very small] sticking coefficient in the
attachment/detachment of carriers to step edges, thereby making that the rate-limiting process.
We can now characterize this crossover analytically (Khare and Einstein, 1996, 1997).]

In terms of the models of dynamical critical phenomena (Hohenberg and Halperin
1977), EC and PD are examples of cases A (no conservation law) and B (conserved order
parameter), respectively. The behavior 41 e« g2 in EC is due to the fact that the relaxation is
proportional to the gradient of the local surface free energy, which in this case is just the local
curvature of the step edge. The extra factor of g2in PD (14’1 o< q#) arises from the additional
—92/9y2 coming from the conservation condition. In spite of some similarities, TD is not
(Siggia, 1996) an example of case C (coupling to an auxiliary conserved density). The extra
factor of Igl (tq! o< Iqi3) comes from the exponential decay of the concentration toward the
terrace value as one moves away from the step edge. In contrast, the terrace concentration is
uniform in EC and effectively zero in PD. From the perspective of the long-studied problem
of the decay of sinusoidal gratings in 3D, reviewed/studied from different perspectives by H.
Bonzel, W.W. Mullins, L.-H. Tang, W. Selke, J. Erlebacher, and M.V. Ramana Murty in
this volume, EC, TD, and PD are called [3D] evaporation/condensation, volume diffusion,
and surface diffusion, respectively. Notice from eqgn. (3) that in all three cases the early-time
behavior of Gg(t) is linear in t, characteristic of diffusive, exponential relaxation. In contrast,
the real space analogue, the mean-square width w2(t-t) = (|x(t) - x(t)/2) is not linear in any of
the simple cases; instead, w2(t) o t1/2, 113, 114, for EC, TD, PD, respectively. (Cf. Note
1.) Fluctuations of positions along the step edge—in contrast to those of the q-modes—are
interdependent. This problem of coupled Brownian oscillators has a rich history (Wax,
1954).

There are other ways to obtain many of these results. Decades ago Mullins (1957,
1959, 1963) showed the fruitfulness of formulating the problem in terms of a step chemical
potential. Bales and Zangwill (1990) used the linear kinetic approximation that the step
velocity is proportional to the difference between the adatom concentration near the step edge
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and its equilibrium value. Pimpinelli et al. (1993) trisect each system into a fluctuating step,
a reservoir of atoms enabling the fluctuations, and a pipe connecting the two, through which
the exchange of atoms occurs. From this incisive perspective, they can quickly account for a
large number of limiting cases, including multi-step situations, but sacrifice the factors of
and the like appearing in more precise derivations. Elsewhere in this volume, B. Blagojevi¢
and P.M. Duxbury formulate the problem in terms of the probability P(y) that atoms leaving
the step at one point return to this step a distance y away. Not only do they retrieve the early-
time growth of the mean-square width in the three limiting cases EC, TD, and PD, but they
can achieve intermediate values t1/(@+1) if P(y) o< y=0. It is not immediately clear how the
form of P(y) relates to the physical nature in our formulation. We (Khare and Einstein,
1996,1997) have also been able to produce cross-over behavior between limiting cases by
considering a unified formulation that considers all three mechanisms simultaneously, as well
as reproducing and extending the multistep behavior of Pimpinelli et al.

As an illustration of the application to actual data of the analysis procedure developed at
Maryland, we consider the case of an isolated step on Ag(110) directed 30° from the close-
packed [110] direction, measured by STM at room temperature by Reutt-Robey's group at
Maryland (Ozcomert et al., 1994; Pai et al., 1996; Reutt-Robey and Pai, 1997). A best fit of
the early-time measurements of the autocorrelation function is w2(t) = 33.7A2.10.49,
consistent with EC. In the capillary wave analysis, the lowest value of q was 2.1 x 10-3 A-1,
corresponding to a wavelength 3000A. Some half-dozen values of q up to eight times that
lowest value were analyzed for up to 1000 sec. From the fits of Gg(t), A (and thence f = 18
meV/A) and Tq were obtained. In the plot of ‘tq'l vs. g, the fit to qg was much better than the
alternatives, supporting the view that the fluctuations are EC limited. From the prefactor of
this fit and the deduced P, we find a mobility I, = 1.8x102 A3s-1, leading to T, = 350 msec.
For an isolated step along the [110] direction, the stiffness is over 8 times as large, but T, =
400 msec, indicating that the ability of steps to supply Ag atoms to the terrace (™! = 3
[events] per second [per step site]) has little dependence on step orientation (and so kink
density) (Pai et al., 1996). For Si surfaces at much higher temperatures, also examples of ¢
1 oc g2, the mobilities are much higher: for Si (111) at 900°C, t5-! = 106 atoms/sec (Alfonso
et al., 1992; Bartelt ez al., 1993); for Si (100) at 700-1200°C, 1,-! = 103 — 106 dimers/sec
(Bartelt et al., 1994b; Bartelt and Tromp, 1996). Kuipers et al. (1993, 1995) had found
similar fluctuations on vicinal Au(110) and Pb(111). Cases of vicinals on which fluctuations
with 741 o< g4 have been observed are: Ag(111) (Poensgen et al., 1992), Cu(100) (Giesen,
1992; Poensgen et al., 1992; Giesen-Seibert et al., 1993, 1995; Masson et al., 1994; Barbier
et al., 1996) and Ag(100) (Hoogeman ez al., 1996; Wang et al., 1996). To date there have
been no observations of 141 e Iqi3; as discussed in the penultimate section, there may be
reasons for this related to the isolated-step approximation.

'APPLICATIONS TO SYSTEMS AWAY FROM EQUILIBRIUM

Our hope in finding mobilities from well-defined experiments in equilibrium is to be
able to use them in situations away from equilibrium. As an example, we consider the
problem of step unbunching. When vicinal Ag(110) is oxidized, it is energetically favorable
for the oxygen to form chains on the terraces in the [001] (next-nearest neighbor) direction.
Since it is energetically favorable to have a few long chains rather than several short ones, the
surface phase separates into wide flat terraces covered with (1xn) chains and closely-spaced
bunches of steps with temperature-dependent average misorientation. The oxygen can be
rapidly removed by dosing with CO. The surface is left in an unstable configuration, and the
steps relax back to the original uniform vicinality. Using formalism developed by Rettori and
Villain (1988), we seek to account quantitatively for this behavior in an essentially 1D picture
(viz. average position of each step as a function of time or CO exposure).
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sion we need an expression {or the free energy as a function of the

To start this discus
local misorientation from the terrace {or facet} plane, or more precisely, the free energy per
projected area, namely
(0

SoT)+B/L+g/E,
per area of the terrace, and £ = (step height h)/tan(¢) is the

where fo(T) is the free energy
hus, § was defined after eqn. (3), and g/¢2 is the repulsion

distance between steps, T
en steps. Such an interaction always exists because of entropic repulsion due to the
non-crossing of steps and is usually enhanced considerably by an elastic repulsion. The
es (o

fle.T)

hetwe
formula for g is given in Note 2; when the repulsion is purely entropic, g reduc

(mkpTY/6B (Williams er al. 1994). The repulsion produces what amounts o a 2D pressure
defined as the negative derivative of the surface free energy with respect to surface area, with
the number of steps held fixed (Ozcomert e al., 1993). Since the width can be taken as

=

constant,

p(Oy==a(tf(0)/ 31,

Thus, the pressure difference on the two sides of the step is proportional to the difference of
the inverse cubes of the terrace widths (neglecting possible intereactions with more distant
steps). Again in the overdamped limit, the step velocity dx/ot is proportional to the pressure
{from the terrace behind the step minus the pressure from the terrace ahead of the step. Since
the motion is again step diffusion, the prefactor ought to contain the same transport
ficient as that for equilibrium fluctuations, 'y for BEC or Dgyegy for TD, in either case
divided by kgT. Alternatively, this can be described as a current produced by the gradient of

CoE

a chemical potential assoctated with each step (Rettori and Villain, 1988),

5 a theoretical check of these ideas, Bartelt ez al. (1994a) created in an 508 model a
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steps, just entropic. In Fig. 2 we show the average positions (x;(y, Uy of the steps (1=
1,...5) as functions of time. Coploued with these wiggly curves are sm wcoth curves obtained
hy integrating the first-order equations of motion of each of the steps. The value of I dapCay I
these curves is sirilar w that obtained from an ana of the flucations of an is
single step as well as from an explicit caleulation of | both Dy and cgy for a flat surface.

The mmrm‘mmm evidence for this scenario, mentioned at the outset of this section, is
less compelling since it is harder to control this sort o "‘diméﬂ -sensitive STM experiment than
a Monte Carlo simulation. (Specifically, it problematic to convert from CO dosage to the
evolution time from initial instability; the analysis would be better if the surface could be
instantancously de-oxidized.) From an earlier examination of the terrace-width distribution
for Ag(110)2°->{001], Ozcomert et al. (1993) concluded that to a good ;mpmm‘zmmn the
step-step interactions were purely entropic repulsions (by finding a good fit to a free
form (Jods et al., 1991)). (But see also Pal er al, (1994) for remarkable behavior undu
different conditions.) From the relationship (Bartelt ef al., 1992)

=ksTly~y)/ ((X'é,v} -x(y))) ®)

(rather than capi l'mf Wave uwm“v} i}wy m d Mfmmd the %ii'ﬁ“nmf»; tobe = kyT
meV/A for steps
ured average (over jy ) Q% eac

1 siep gmsx on as a function of time (or CO
with smooth curves indicating a best fit 1o in ted Rettori-Villain equations
omert et al.,, 1995; Reutt-Robey and Pai, 1997). The best fit is obtained with
msec, similar to (about half) the value deduced from capillary-wave analysis of cquil
fluctuations,

h;mm

Fig. 3. Time evolution of the positions of the steps on vicinal Ag(110) after removal of the surface oxygen
2, the smooth curves are from the theory of Rettori and Villain (1988).

by reaction with CO. As in Fig.
Replotied from Reutt-Robey and Pai (1997), with permission.

APPLICATIONS TO DIFFUSION OF LARGE SINGLE-LAVER CLUSTERS

It is by now well established (Kellogg, 1994; Wang and Ehrlich, 1990) that field ion
microscopy (FIM) can be used to monitor the diffusion of small clusters of atoms or



vacancies on metallic surfaces. In recent years (room-temperature) STM has allowed for
quantitative measurements of the Brownian-like motion of large single-layer clusters of 100's
of atoms or vacancies on surfaces. As the cluster engages in this diffusive process, its center
of mass can be tracked in a succession of images. One then expects the mean-square
displacement of this center of mass to be proportional to elapsed time, the proportionality
constant being four times the cluster diffusion constant D¢. Such behavior was indeed
observed by Trevor and Cidsey (1990) for Au(111), by de la Figuera et al. (1994) for
vacancies on Cu(111) dosed with Co, by Wen et al. (1994, 1996, 1997) for Ag islands on
Ag(100), by Wendelken et al. (1997) for Cu islands on Cu(100), and by Morgenstern et al.
(1995) for vacancies on Ag(111). In each case, again as expected, D¢ decreases as the
number N of atoms or vacancies in the cluster (or, equivalently, its average mean-square
radius R2) increases. Long ago, Binder and Kalos (1980) argued that D¢ should decrease by
some integer power of R: D¢ = D¢oR"®, where the integer o depends on the atomistic process
governing the diffusion. Morgenstern et al. (1995) found that o = 1.97 £ 0.39 for R
between 20 and 150 atomic spacings (viz. 2.9A), while Wen et al. (1994) reported 1/2< . <
1. Issues of interest include: what these values of o indicate about the atomistic processes
underlying the diffusion, and what the prefactor Do reveals about activation energies.

While there have been several other different direct approaches (Morgenstern et al., -
1995; Van Siclen, 1995; Sholl and Skodje, 1995; Soler, 1994,1996) to this problem, we
here pursue the perspective that the fluctuations of the cluster can be viewed as fluctuations of
its boundary, which is a closed single-height step (Khare et al., 1995; Khare and Einstein,
1996). Our approach is to adapt the formalism for open nearly straight steps to closed nearly
circular steps. Denoting by r(8,t) the radial distance of the edge from the center of mass, we
define a normalized deviation g(6,t) from a perfect circle and do the equivalent of capillary-
wave decomposition:

2(0,)=(r(8,6)-R)/R=Y g,(t)e". ©

The Langevin equation for gn(t) is essentially the same as eqn. (2) for xq(t), with Tl
replacing tq‘l and R-1ny, replacing TMgq. Our previous calculations for straight steps can be
carried over to circular steps by making the replacement ¢ — n/R. Since the displacement of
the center of mass at time t is given by rem2 = xem? + yem?2, we find

7D[ =(ry) /4= R2<|gll2> /t=R¥,7,(1-e"'*)/ 2t ~k;TR%;\(R) / 7B = D,R™* (10)

where we have again used the result that in equilibrium (gn(®)12)y = kBT/2an3n2 (Noziéres
1992). [See also Note 3.] Thus, again the relation between the microscopic and
macroscopic perspectives occurs thruough the characteristic time. For the cases EC, TD, and
PD, since tq-! = q2, @3, ¢*, we now have 711 « R-2, R3, R4, and so o = 1, 2, 3,
respectively, or equivalently, D¢ o N-2, N-1, N-3/2, (In late-stage coarsening by cluster
coalescence—in contrast to the near-constant size regime treated here—Sholl and Skodje
(1996) show that the average cluster radius increases like B, where B =1/(a+2) = 1/3, 1/4,
1/5, respectively, rather than the t1/3 behavior for all 3 cases in the limit of Ostwald ripening.
Furthermore, they find the dynamic scaling law for ng, the density of islands of area s: ng(t) ’
~ 2 f(s/12B).)

To check whether this behavior, based on a continuum viewpoint, is applicable to
vacancy clusters on the scale of the experiments, we performed Monte Carlo simulations
using the.standard Metropolis algorithm. Since the goal was not to replicate any experiment,
we invoked several simplications and “tricks” to bring out the central physics with minimal
complications. We used a square lattice with just an (attractive) nearest-neighbor (NN)
energy -€. We worked at kgT/e = 0.6 (0.5 for TD), well below the roughening temperature
of the corresponding SOS model but high enough so that the equilibrium shape was nearly
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circular, For EC, we used straightforward Glauber (atom hops toffrom “reservoir”)
dynamics, adjusting the chemical potential to keep the number of vacancies aboul constant.
Alternatively, after removing an atom at some random value of 0, we could simply
immediately reattach it at some other random position along the periphery, avoiding the
nuisance of adjusting a chemical potential for the reservoir, (In this approach it is important
when scaling the Monte Carlo data 10 include the fact that the chance of such a move per unit
increases proportional (o the circumference, contributing a factor of R to De(R).) For TD, we
used Kawasaki (atom hops to [NN] vacancy) dynamics. To prevent the vacancy cluster from
dissolving, we forbade vacancy diffusion from the cluster boundary into the surrounding
atomic lattice. To enhance motion across the terrace, we reduced the energy of an isolated
atom in the interior of the monolayer pit to & [from 4e]; this had the added benefit of
suppressing atom-cluster formation in the pit. For PD) we again used Kawasaki dynamics,
but with the modification that only NNN (next nearest neighbor), not NN hops were
allowed. This “trick” enhanced the probability of creation, along a str'«aig,m edge, of atom-
vacancy (notch) pairs and prevents mﬁﬁmrxg atoms from being trapped in corners. We
considered clusters of size 100, 400, 1600, and 6400 vacancies [embedded in a much bigger
lattice} and found from log-log plots of D vs. R the best-fit ¢ xponents o = 0.97, 2.03, and
3.1, respectively, in excellent agreement with the predictions of the continuum thwﬁzy
In this framework, the Morgenstern er al. (1995} experiment for Ag(l11) pits is an

example of TD, as they themselves concluded kmm an argument following {h > approach of
Pimpinelli er al. (1993). Microscopically, the picture is that Ag atoms cannot surmount the
barrier, so that they are trapped inside the pit. Thus, there are not the particle flu ""uagimm
associated with EC. On the other hand, Wen er al. (1994, 1996, 1997) find behavior more
similar to EC. There are considerable particle fluctuations: Wen ef al. (1994) remark that ﬁn 'y
exclude islands which decrease in area by more than 20% during the course of the
observations. Moreaver, the islands are more nearly square than circular (Wen et al., 1996,
1997); much of the evaporation may occur by an edge-peeling mechanism (Van Siclen, 1995
Evans et al., 1997) which is rate-limited by the detachment of a corner atom and so virually
tmﬂa,pm“;dmk of island size. In that case, the experimental exponent o could be more like 1/2
than 1, On the wihu hmd Wendelken er al. (1997) bave just reported PD behavior for Co
istands on Cuf100), They also considered Ag islands on Ag(100), and there are preliminary
indications that o is much greater than 1 and close 1o 3 (Pai 1997), consistent with
measurements of vicinal Ag(100) (Wang ez al., 1996).

Our Langevin analysis also produces exact expressions for the prefactors Dreo for the
three cases: Dy/®, Dyyese$32/m, and Dgeg Q. [See Note 4.1 The last of these is the 2D
analogue of the 3D expression derived by Gruber (1967), To check the numerical mium of
Di¢o obtained from the y-intercepts of the log- % plots, we also computed the diffusion
constant directly by applying a weak potential gf‘adi«:zm F to straight steps (or to wmwm%‘ ona
fat terrace for TD) and secking the resulting average velocity ¥. Thence, the muuu diffusion
constant can be calculated from the Einstein-Nernst relation D = kp TRIAFL. The resultin g
valpes agree to within 23% with those from the log-log plots. It is templing to extrac
activation energies from the prefactors, an activity in which we have participated (Khare and
Einstein, 1996). While the numbers oblained are semiquantitatively wmew the level of
correspondence to the real physical numbers depends on the accuracy of the presumptions
made by the investigator about the microscopic Hamiltonian and how the MACTOSCOPIC
parameters depend on these energies,

UNIFIED FORMALISM, CROSSOVER, AND STEP REPULSIONS

Most of the preceding has been couched in terms of three separate, distinet cases. For
the cluster problem we have presented a unified formalism encompassing all 3 lmits and
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permitting the examination of crossover between them. We sketch the derivation, referring
the interested reader desiring more details to Khare and Einstein (1996). The starting point is
to define a chemical potential for the cluster edge analogous to that for a step (Mullins, 1957,
1959, 1963; Bonzel and Mullins, 1996), having the form ps = -QR-13a2g/002. We next
apply the radiation boundary condition in the adiabatic or quasistatic approximation (Bales
and Zangwill, 1990; Cahn and Taylor, 1994). With the assumption of a steady-state
concentration of carriers on both the interior and the exterior terraces, the diffusion equation
for the concentration reduces to a Laplace's equation. At any point along the edge, the net
flux is determined by the normal component of the flux from the interior and exterior
terraces—assumed to be linear in the difference between the concentrations on the two
terraces—and by the motion along the island periphery. On the outside (inside) of the nearly-
circular step this flux is equated to the mobility I4(-) times the difference of the carrier
concentration just outside (inside) the step minus (1 + (Lg/kpT)) times the concentration far
from the edge. This provides the boundary condition needed to solve Laplace’s equation for
the concentration. Furthermore, the sum of the net attachments on the two sides determines
the motion of the step (and hence of the island as a whole) Rdg/ot. Decomposing into
circular modes as in eqn. (9) and inserting into the equivalent of eqn. (2), we find a
complicated expression for the characteristic times T, of the modes. For simplicity we
assume an atom island, with all the atomic motion on the exterior. We define two
characteristic lengths: 1) Rgy = QDg, /T is essentially the ratio of the tracer (atomic) diffusion
constant of the terrace Dy, to the mobility. When it is large, diffusion over the terrace is
much greater than attachment or detachment, so the motion is limited by the latter and so
more likely to be EC than TD. 2) Ry = (2,QDg; /T)1/2 is a similar ratio of the tracer diffusion
constant along the step to the mobility. To determine the cluster diffusion constant D¢, we
again need only t1-1. We find

o2 3 4

2 10 «
log(F/Rs)

~ Fig. 4. Countour plot, with gray-scale shading of the effective exponent Oeff as a function of the common
logarithms of the dimensionless ratios R/Rg and Rsu/Rst. The large regions of gray, light gray, and white
represent o = 1, 2, and 3, indicative of EC, TD, and PD, respectively. The crossover regions are relatively
narrow. From Khare and Einstein (1996), with permission.
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From egn. (11) it is straightforward to compute the exponent Oy = -dlogDy/dlogR that
one extracts from log-log plots of data. Fig. 4 gives a contour plot of this effective gxponent
in terms of two dimensionless ratios of the three lengths. For very small clusters, EC
eventually dominates (although the continuum approximation may well fail before this limit is
reached). For very large clusters (perhaps unphysically large, depending on the size of Ry,
and Ry, TD eventually is reached. The most important feature is that the crossover regimes
are relatively narrow, little over a decade in R. This suggests that Oarr should attain a
constant value if the data contains a large range of sizes and that one should not find values of
Oefr other than 1, 2, or 3 for this constant. Contrary findings indicate either problems with
the experiment or significant physics missing from the theoretical analysis (e.g. the edge-
peeling of Ag(100) islands).

Some clarification of the names of the three regimes should be made. In the extreme
case Dgy = 0, 50 Rgy = 0, eqn. (11) reduces to Dt e R[T + (R/Rg)?], and we find smooth
crossover directly from o0 =3 to o = 1, as suggested by the bottom of Fi £. 4. In this limit,
atoms cannot escape from the step to the terrace, even if they can detach. Physically, when
the atomic motion along the periphery is very long range, the local mass flow is effecti vely
driven by the curvature rather than its second derivative, and we find BC-like behavior,
Thus, EC denotes only that attachment/detachment limits the rate, and not that there is a finite
carrier concentration on the terrace. What we Iabel TD was called “correlated EC” by Soler
(1996) and by Van Siclen (1995). The essential physical mechanism characterizing this
regime is evolution by single-atom jumps from one site on the island edge to another,
mediated by a concentration field on the nearby terrace region.

Bonzel and Mulling (1996) have carried out a similar analysis for an isolated straight
step, and we (Khare, 1996; Khare and Einstein, 1 997) have extended our formalism to treat
both such steps and a vicinal surface, i.e. an infinite ¢ ray of steps. As for islands, one can
examine the crossover between the three limiting regimes for isolaied steps. The main result,
again, is that the crossover regions comprise a rather narrow portion of phase space. We
also recover the important cases of ransport between sieps when the g-dependence of ”E:q“l
and the early-time dependence of the mean-square width do not correspond to the
corresponding behavior of an isolated step, cases D and E in Pimpinelli er al. (1993). In case
D, there is no diffusion along the step edge (Dy=0). Since DgulghT™ << 1, the transport is
terrace

liffusion limited, but now Igif << 1. As a result, w2 ~ (172 and Tyt ee 0GR the Jatter
inequality leads to a factor of g being replaced by £-1, For case E, atomic motion alon g the
step edge is again forbidden, DyylqUl << 1, and gl << 1, but now there is also the
condition of a perfect (infinite) Schwoebel barrier; atoms approaching a step from the upper
side are reflected back rather than crossing over the step and possibly attaching to it
Following through the algebraic reductions from taking the appropriate formal lmits, we find
that tq'! e £ q* rather than 3, and w2 ~ (14, Thus, it is important to measure step
fluctuations for different vicinalities to be certain of the correct assi gnment of transport mode.
On the other hand, if one does find g? or t1/3 behavior, it most likely is due to the TD
mechanism. We are in the process of characterizing the crossover between TD and case D or
case E behavior.

Other crossover behavior can arise when one moves (0 a re gime where the continuum
picture is not valid. For examples, Giesen-Seibert ef al. (1995) show that for PD, at very
carly times w? behaves like 112 rather than 114 because the dynamics are dominated by
random walks of kinks. In their simulations the effective exponent decreases smoothly with
increasing temperature, with no evident crossover in any of the fixed-T log~log plots of w?
vs. . They also show how 1o take into account “fast events,” viz. rapid, inconsequential




back-and-forth motion of atoms (“blinkers”). This work builds on an earlier analysis
(Giesen-Seibert and Ibach, 1994) in which they examine the structure of the probability
distribution of the time between jumps as a function of the number of scans and the time of
each scan, showing that the result does not depend simply on the product of these two
arguments and that this sort of analysis can be used to filter out blinker events. Masson et al.
(1994) propose a way to scale the step-step correlation function in terms of the STM
scanning speed to allow the separation of diffusive behavior at fast scanning speeds from
rapid temporal fluctuations at slow speeds.

A final issue of importance is the role of energetic repulsions between the steps. From
eqn. (6), expanding about the average position of the step, we find the leading correction to
the step free energy discussed while treating eqn. (1) is cx2, where ¢ = 6g¢-4. Then in the
EC case, Po2x/dy2 (implicitly) in eqn. (1) is replaced by Bo2x/dy2 -2cx, leading ultimately to
the replacement of Bq2in A and 1(q) by Bq2 +2c. This effect should only be noticeable for
gs< 20-24(3gP). Nonetheless, it can mask crossover behavior expected in the long-
wavelength limit. For the PD case, Masson et al. (1994) provide an expression for {|x(y,t) -
x(0,0)/2) in terms of a generalization of the equation in Note 1.

"CONCLUSIONS

We have shown how capillary-wave analysis in a Langevin framework is a conceptually
enlightening and calculationally fruitful way to explore the quantitative data on step
fluctuations that is now becoming available. The same perspective that is used for
conventional steps near equilibrium can be applied to the closed, nearly circular steps
defining a monolayer island and can assist the study of step bunches far from equilibrium.
Most of phase space is dominated by one of three distinct physical mechanisms of atomic
motion (EC, TD, and PD), the entire problem can be treated in a unified way within a single
Langevin equation. It is consequently possible to examine the crossover between these
limiting cases.

As a continuum approximation, this approach should break down by the atomistic level.
For islands it is presumably inappropriate for the small clusters imaged with FIM. More
importantly, in many cases the stiffness may not be nearly anisotropic, as we have assumed it
to be in our analysis. Then, as perhaps for Ag(100) islands, new mechanisms may play a
role. For vacancy clusters, there can be trapping in corners in systems that might seem to be
cases of PD from consideration of vicinal surfaces.

In future work we plan to extend this approach to consider the effect of external fields
due to applied potentials or adsorbed species, as well as the modifications when surface
islands can change their mean size (ripening or decaying). Correspondingly, there is
noteworthy current work on the effect of sublimation or deposition on the step fluctuations of
a vicinal surface (E.g. Pierre-Louis and Misbah, 1996). It would also be interesting to
consider the effects of weak pinning potentials.
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NOTES

1. To obtain the early-time behavior of the mean-square width, we take the continuum limit
of the sum over ¢, nofe that the integrand is even, convert to dimensionless variables, and
integrate by parts (Khare, 1996):

EP koo rnf A NI j_
wh(t) = znfgj$1 ~exp(~ A,Zm‘,,}qi )E g dg . }

where Aj is the prefactor defined by ’t:q"f = Aglgl?, and I'(z) bere is the gamma function. Here
n =2, 3, 4, for EC, TD, and PD, respectively, and I'(1/2) = ¥r = 1.77245..., T(2/3) =
1.3541..., and T'(3/4) = 1.2254... In this expression one of the time indices in eqn. (3) is
taken as 0, implying the step is initially straight. If both time variables are taken as large, but
with a fixed difference ¢, then step fluctuates initiallv. Then in the intermediate expression
above, the prefactor doubles and the exponent halves, so that 21/ is replaced by 2 in the final
expression, as noted for the PD case by Masson e al, (1994). See also Appendix A of the
chapter by Blagojevi¢ and Duxbury. (In our later section on island diffusion, o corresponds
o n-1.)

2. The full, correct formula for the amplitude g(8,T) in the expansion of the froe energy per
projected area, eqn. (6), is (Williams er al. 1993, 1994):

- 12yt
SR P Y |
}1 ‘”{1 ' Ecﬂ?“‘&?{'&,'l“)} [

where h is the step height, Ag is the amplitude of the energetic £-2 decay, due typically 1o
elastic repulsions, and b2(8,T) is the diffusivity of the ep, Le. {Jx(y) - %(y W) = b2{y-y"Vay

for Qm;‘ 1L ly-y'}; in terms of the stiffness, b2(8,T) = kpTay /8,T) cos?a.

3. In the middle of egn. (10) we have made an early time approximation which requires some
justification since the observation time is much longer than . However, 1y in turn 18 much
greater than the time for macroscopic events: e.g. in the EC case, 11 = (L;B",”f'fﬁa)(\R!&)Mm
where the first term is somewhat smaller than unity and the second factor considerably
greater. MNext we can consider the position of the center of mass after each of M atomic
events:

. o \
Uy ) = E,,,Jl“m(w ””” Py (7 )}

Ty (7
In then computing (rem?()) to find the cluster diffusion constant, we nole that these
differences are all in the early-time vegime, The diagonal terms each contribute 4Dc(t-t1)
while the off-diagonal terms have random sign; hence the diagonal term is of order M while
the off-diagonal sum is of order unity. If we were to compute shape fluctuations, as
i d in Khare and Einstein (1996), the diagonal term is also limited in size rather than
ing linearly with total time, confounding application of the method to experimental

= Dgegfd?, e only the combination Dgeg enters the
transport coefficient.  From this perspective the separation of Dg and ¢g is somewhat
arbitrary, leading to a subtle difference in notation between Khare er al. (1995) and Khare
and Einstein (1996). In the former, g is the actoal carrier density along the siep, and Dy is
then the actual diffusion constant along the edge. In the latter reference, ¢g!® is defined as
Csydy in conjunction with eqn. (23), leading to an effective Dy fe.g. in egns. (9) and (23)]
equalling Dglactiallegf(ega).
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