Experiment  IV: 
 RC and RL Circuits
I.  References 

Halliday, Resnick and Krane, Physics, Vol. 2, 4th Ed., Chapters 33

Purcell, Electricity and Magnetism, Chapter 4

II.  Equipment 

Digital Oscillocope

Signal Generator

Differential Amplifier

Resistor/Capacitor Board

10 mH inductor 

LCR meter

Digital Multimeter

III.  Introduction to Capacitors and Inductors: 

A capacitor is a conductor or set of conductors that can store electrical charge and thus store energy.  Usually a capacitor is constructed of two parallel surfaces (either two plates or two concentric cylinders) with a potential difference between them.  The ability of a conductor to hold electric charge depends upon geometry of the conductor and also on the potential difference between the two plates. 

For example, consider a pair of parallel plates each with an area A, separated by a distance d, and with a potential difference V between the two plates.  This induces an equal and opposite charge density ( on both plates, and the electric field E is given by 
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The electric field E is related to the voltage V by the equation E = V/d, so V= d/0 or equivalently, 
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We define the capacitance C as the amount of charge present per unit voltage V applied:
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The capacitance then depends only upon the geometry.  This is true for any conductor of any geometry.  This means that the ratio of charge to volts is constant for capacitors, which differentiates them from resistors, for which the constant ratio is between current and applied voltage applied.  In this and subsequent labs, we will explore their use in both DC and AC circuits.

Devices that are considered to be inductors are generally something like a solenoid or a coil of wire. A current in a wire will generate a magnetic field, and the field depends upon the value and the direction of the current as well as the geometry formed by the wire (straight, loop, etc.).  For a solenoid (see Figure IV-1), the field generated is along the axis of the solenoid, and reasonably constant within the solenoid as long as the solenoid is sufficiently long compared to its diameter that you can ignore edge effects.
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Figure IV-1: A coil of wire, or solenoid. 

The field B generated by the current I in the solenoid is B=NI/l.  The magnetic flux ΦM is defined by the amount of the field B which is perpendicular to the area of the loop, 
[image: image5.wmf]A

=

p

D

2

4

.  The total magnetic flux is given by the flux through each loop times the number of loops:
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where the vector part of A points perpendicular to the area itself.  For the solenoid above, the field is perpendicular to the area, or 
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, so that the total flux is then simply given by 
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Substituting B=(N/l) I gives
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So the magnetic flux through the device is a product of two things:  the current I, and various quantities that are related only to geometry and constants.  This means that the quantity
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is independent of the current, and is a characteristic of the device’s construction.  The quantity (M/I) is called the inductance, L, and has units of flux (T-m2) per current (Amps).  This unit is called the “Henry”.  Note that Equation IV-3 was derived for a solenoid, but is in fact true of any device geometry.

Faraday’s law states that a changing flux (d/dt) will be “resisted” by the inductor such that a “back emf” is induced in the device, and since all devices have some inherent resistance, this will cause an induced current.  This current will give rise to an induced magnetic field, and the direction of this field will be in a direction that will oppose the change in the flux (Lenz’s Law).  For example, if the flux increases in some direction, then the induced magnetic field will increase in the opposite direction to oppose the change.  If the flux decreases, and is along some direction, the induced field will increase along the same direction, such that the net flux will (try to) remain constant. 

If we differentiate Equation IV-2 above for the solenoid, we get 
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Since most inductors have very small resistances, most of the voltage drop across them is due to this “back emf”, which comes from the combination of Faraday’s and Lenz’s laws. In this lab and the next several, we will be studying the behavior of circuits where the inductor is present.  Note that all circuits have some amount of inductance, whether due to a “real” inductor, or due to the fact that the circuit contains wires, resistors, etc. which are subject to Faraday’s and Lenz’s laws.  So understanding inductances is important for any circuit.

IV: The DC RC Circuit

A.  Introduction


In this experiment we shall investigate the behavior of a simple circuit which contains a voltage source VIN, a resistor R, and a capacitor C all in series as in Figure IV-2. 
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Figure IV-2:  An RC circuit with a voltage source VIN. 

Kirchhoff's Law tells us that the total change in potential around the circuit loop must be zero.  Using this we can develop a first order differential equation to study the behavior of the voltage and current in the circuit.
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It is straightforward to solve this equation by rearranging terms to get: 
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where ( (RC, and Q is the charge on the capacitor (and whose derivative should be the current in the circuit).  Note that the quantity ( has units of time.  Integrating this equation gives
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where k1  is a constant of integration.  Taking the exponent of both sides gives us the behavior of the charge on the capacitor as a function of time.  Applying the initial condition that Q(0)=0 allows us to replace the integration constant k1 with –CVIN , resulting in the following expression for Q(t). 
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Differentiating this expression once gives us the current in the circuit as a function of time.
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We can now use Ohm’s law for the resistor, VR=IR, and the definition of capacitance VC = Q/C to find the voltages across the resistor and capacitor respectively:
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[image: image19.wmf]
Figure IV-3:  VC and VR as a function of time.

Figure IV-3 shows the voltage across the capacitor VC and the resistor VR as a function of time with the input voltage VIN=5 Volts and RC=1 μs.  We see in this figure that at first, all the voltage is dropped across the resistor, and then VR falls exponentially to zero, while VC climbs exponentially to VIN.  A capacitor is a “DC open” in the circuit, in the sense that no real DC current can get through.  After a time that is long compared to the RC time constant , the current I in the circuit will go to zero, so VR will go to zero as well.  

Now, instead of using a DC voltage VIN that is constant, you will use a function generator capable of producing a square wave, as in Figure IV-4.  This pulse train has a period T and frequency f=1/T, and amplitude V0 .  In essence, this is the same as if you were to take the DC voltage V0 and every T seconds you invert the polarity to –V0.  The capacitor would then be charging, discharging, charging, discharging, etc. 
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Figure IV-4:  The waveform of the input voltage you will be using in this experiment. 
The resulting waveforms VIN(t) and VC(t) should look like the following:
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Figure IV-5:  The waveform of the voltage across the capacitor compared to the input voltage.

Applications of RC Circuits

If t is short compared to the time constant =RC and we consider the simple circuit in Fig. IV-2, then  VC ( 0  and the circuit equation becomes
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or, rewriting this as  
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So for  t (( RC,  then VC is the integral of the input voltage VIN and the circuit is an integrator.

If, on the other hand, t is long compared to the time constant = RC, then the voltage across the resistor VR (0 and the circuit equation becomes 
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Differentiating the input voltage gives 
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 then the voltage across the resistor is the derivative of the input voltage: 
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So for t (( RC the circuit is a differentiator. 

V:  The DC RL Circuit

.  Introduction

Now let’s look at a simple RL circuit, as shown in Figure IV-6.  It consists of an input voltage VIN, a resistor R, and an inductor L.
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Figure IV-6: An RL circuit.

Conservation of energy, and Kirchhoff’s Laws, require that VIN = VL + VR.  For the resistor, Ohm’s Law allows us to make the substitution VR = IR .  Using the definition of inductance we can write 
[image: image31.wmf]V

L

=

L

dI

dt

 and thus come up with a first-order differential equation that describes the current in the circuit as a function of time. 
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If we imagine that VIN is a constant V0, and at t=0 it is “turned on” (goes from 0 to V0), then once there is current flowing in the circuit, it is a DC circuit with VIN = V0 in Eq. IV-7.  The procedure to solve this equation is the same as was used for the RC circuit.  We can rearrange it to write
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Since the left hand side has units of amperes, the right side must as well.  Therefore, the quantity 
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 must have units of time.  So we define the RL time constant to be =L/R and the initial current to be I0 = V0 /R so that we can rewrite the equation as
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Dividing both sides by 
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 and integrating gives us the current as a function of time.
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where k is a constant of the integration, dependent upon initial conditions.  

Figure IV-7 shows the initial condition V(t=0) going from 0 to V0.  Just before t=0, when the voltage is zero, there is obviously no current.  Just at t=0, when the voltage rises to V0, the current begins to rise due to the finite resistance R in the circuit. Note that at these early times, the inductor simply acts like a piece of wire with a very small resistance, which we can neglect.  The initial condition on the current is therefore I(0)=0, which means that the voltage drop across the resistor VR=0 (since VR=IR).  Therefore, the entire voltage drop across the inductor VL must be equal to the voltage V0.


[image: image38.wmf]
Figure IV-7:  Input voltage as a function of time

The constant k can then be evaluated.  Since the current through the circuit is initially 0 but changing rapidly, all the voltage in the circuit is initially dropped across the inductor.
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Differentiating Eq. IV-8 and evaluating at t=0 gives 
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.  Using this expression, Ohm’s Law and the definition of L allows us to write expressions for the voltage across the resistor 
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Note that the conservation of energy condition 
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 is satisfied.  Figure IV-8 shows the input voltage V(t)=V0, VR(t), and VL(t).  The x-axis is time in units of the exponential decay time 
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[image: image49.wmf]
Figure IV-8:  V0, VL and VR as a function of time in an LR circuit for a square wave input.

Part A:  RC circuit Measurements

Connect up the circuit shown in Figure IV-9.  First connect the function generator, resistor and capacitor together in a loop.  Use a 10 k( resistor in series with a 0.1 (F capacitor.  Measure the resistance with a digital multimeter and the capacitance with an LCR meter.  You will need to use  “BNC tee” and “BNC-to-banana” connectors from the function generator to the resistor.  The outer shield of these connectors will be in direct contact with the third prong of the AC power cord of the function generator and thus are at “Ground” potential.  Then connect CH1 of the oscilloscope to the function generator and CH2 across the capacitor.  Again, you will need to use a “BNC-banana” connector and be sure that the “ground” side of the capacitor is connected to the outer shield of this connector. 

Dial up a 100 Hz square wave on of your function generator and look at the output in channel 1 (CH1) of the scope.  See Appendix C for a description of the Waveform Generator.  Put the “TTL” output of the function generator into the “EXT” input of the scope, and be sure that the trigger is set to “external”.  Convince yourself that the signal you see is the correct signal.  Using a “tee” of the function generator output, and look at the voltage across the capacitor VC using the other scope input channel (CH2).  Be sure to pay attention to the grounds: if you hook the scope up “backwards”, you’ll be drawing current through the scope to ground instead of through your RC circuit.  Notice that if you follow the diagrams correctly, all the grounds should coincide.  

A-1:  Display both VIN and VC simultaneously on the scope.  Make a sketch both waveforms one above the other, and sketch the difference VIN-VC and show your instructor.  After you have sketched it, go into “Math Menu” on the digital scope, and push “CH1-CH2” (or vice versa, depending on which channel is which).  Compare the scope display to your expectation. Use Wavestar to capture the trace into the computer so that you can save the data into a spreadsheet.   


[image: image50.wmf] 


Figure IV-9:  Circuit to be used in Part A: 

A-2:  Change CH1 to now look at the voltage across the resistor R (VR).  You will need to use the “Instrumentation Amplifier” for VR, otherwise you will connect the “downstream” side of the resistor to ground and effectively remove the capacitor from your circuit (see Fig. IV-10.).  The instrumentation amplifier has a buffer in it that isolates the () side of the input from the oscilloscope ground.  Comment in your lab report on the signal you see in CH1:  is it similar to the above signal you sketched (and saw on “CH1-CH2”)?  Why should it be?  On the scope, in “Math Menu”, look at the signal “CH1+CH2” and comment on what you see.  Using the measuring tools on the oscilloscope, determine the RC time constant of the signal, .  Recall (from Physics 275) that the decay time  is the length of time it takes for the signal to drop to 1/e, or (0.37 of its value (or in half the decay time the signal height will have dropped by 0.61.). 

A-3:  Using WAVESTAR, transfer data to your computer.  Copy the data table to an EXCEL spreadsheet.  Plot ln(VR)  vs. time and obtain the RC time constant from a fitted slope to the data.  Compare your result to the measurements you made with the oscilloscope.  Compare both measurements to a calculation of the RC time constant based on measured values of the capacitor and resistor used in the circuit. 


[image: image51.wmf]
Figure IV-10: Circuit with scope across the resistor using the instrumentation amplifier.

A-4:  Vary the frequency of the generator by 1/10 and by (10 so that you will be looking at the signals VR and VC for 10, 100, and 1000 Hz.  What happens to these signals in each case?  Consider the fact that you can model any AC signal through a capacitor by thinking of the capacitor as having a complex impedance XC=1/iωC where ω is the angular frequency (ω=2πf).   Don’t forget that a scope is “really” a real resistive load (that’s why we draw it as a resistor).  This is discussed further in the next experiment. 

Part B: RL Circuit Measurements



Now construct the circuit shown in Figure IV-11.  Use a 10 mH inductor and a 1 kΩ resistor: this gives a decay time=L/R = 10 s.  Measure the components with the multimeter and LCR meter, and calculate. The output from the frequency generator should be a square wave set to about 10 kHz, which corresponds to a period of about 100 μs.  This means that the full exponential decay will be visible in the scope with the correct time base settings. 

B.1:  Trigger externally again using the TTL output of the waveform generator, and bring the output of the function generator and the voltage across the inductor into the two scope channels.  Adjust the DC offset knob (pull out and turn to control the DC offset value) of the function generator to give the initial condition that V=0 (t<0) and V=V0 (t>0).  Sketch the two waveforms, sketch the difference VIN(t)-VL(t), and show your instructor.   Then, using the scope’s MATH menu, display CH1-CH2 (or vice versa if appropriate) and verify that your sketch is the same.  What does this new waveform correspond to?
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Figure IV-11: RL circuit to be used in Part B

B.2:  With VL(t) displayed, estimate the RL time constant   = L/R using the measurement tools on the oscilloscope as you did  for the RC circuit in Part A.  Then capture the waveform using WAVESTAR.  In the WAVESTAR table, grab enough of the signal to be able to see the exponential decay, and paste it into EXCEL.  Make a column which is the natural log of the voltage, and plot ln(VL) vs. time.  Since 
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The slope of this graph should be equal to –1/τ.  Determine the slope, and compare to the value you got from scope measurements and from a direction calculation from measured values of R and L.  Comment on the discrepancy - what is the cause of the discrepancy, and is it significant?

B.3:  Now change the output voltage to go from –V0/2 to +V0/2 at t=0, by using the DC offset knob on the function generator.  The output voltage would then have the form in Figure IV-12: Push the DC Offset knob in on the function generator.  This will set the DC offset to zero if calibrated properly. (Some of the generators are out of calibration. You can set the DC offset to zero by hand if the calibration is very far off).  
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Figure IV-12:  Output voltage that is symmetric about 0.

This will change our initial conditions.  At as t approaches 0, the voltage output is negative (
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 (same I0=V0/R) where we assume that the voltage drop across the inductor has decayed away.  When t crosses zero, the current will reverse, however the change in the current dI/dt will be the same as in the case already considered.  In that case, the current I increased from 0 to I0, whereas in this case, I increases from –I0/2 to +I0/2, or again I0.  This means that our initial condition will be the same as before: 
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and therefore
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The voltage drop across the inductor will also be the same, given by 
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But the voltage drop across the resistor will be shifted: 
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Figure IV-13 shows the resulting waveforms.  Notice that at t=0, just as the voltage output switches from – to +, the voltage across the inductor exceeds the output voltage!   Inductors are only sensitive to changes in current, and you can use these things to generate huge voltages from small voltage inputs by having the current change very quickly (large dI/dt).  Automobile ignition systems and Tesla coils are two examples of devices that use a large change in current to generate a large voltage drop across spark gaps. 

With this new output voltage arrangement, look at VL and VR on the scope and verify that your signals look like those in Fig. IV-13.  Fiddle with the DC offset (on manual) and verify that you can change the output DC offset with no change to the voltage drop across the inductor. 
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Figure IV-13:  VL(t) and VR(t) for a symmetric square wave voltage from the function generator.
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