Experiment III: 

An Electron Beam in E and B Fields

I.  References

Halliday, Resnick and Krane, Physics Vol. 2, 4th Ed., Chapter 34

Purcell, Electricity and Magnetism, Chapter 5

II.  Equipment

Cathode ray tube and deflection coil assembly

High voltage power supply

Transistorized power supply

Digital multimeters

III.  Introduction


When a particle with a charge q and a mass m interacts with electric and magnetic fields, it experiences a force, called the Lorentz Force, named after Hendrik Lorentz, 1853-1928, a Dutch physicist.  It can be succinctly stated as:
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where 
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 is the force on the particle, 
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 the electric field, 
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 the particle velocity, and 
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 the magnetic field.

You will conduct an experiment to test this force law by shooting a beam of electrons out of an electron gun so that they pass through a region where they interact with an electric and a magnetic field.  This interaction deflects the trajectory of the electrons so that the spot of light generated when they impact on a fluorescent screen is displaced.  The displacement is measured and compared with that calculated from the Lorentz Force Law.

IV.  Interaction with an Electric Field

The electrons will interact with an electric field that is produced by charging two butterfly-shaped, metal plates.  In order to determine the deflection of a beam of electrons by these plates, we need to know the dimensions of the plates and the potential difference between them.  A sketch of the plate geometry is shown in Fig. III-1, along with a graph showing a calculation of the electric field as a function of distance along the plate region.  The line is an exact calculation of the field, and the points are an approximation that we’ll use in this lab.

[image: image6.wmf]
Figure III- 1: Geometry of the electric field plates and calculation of the field.

We start with the assumption that the electron beam has a uniform velocity vz  in the z direction, acquired from an accelerating potential difference VA  in the electron gun.  It therefore has acquired a kinetic energy of 
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As it enters the region where the plates are separated by a fixed distance d1, in encounters an electric field in the y direction, Ey, which is constant and is given by
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where VD is the potential difference between the plates.  Since there is no magnetic field, the Lorentz Force Law reduces to
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Integrating this equation twice, and noting that the time to traverse the distance l1  is l1/vz , we can write the velocity of the beam in the y-direction and its displacement from the z-axis after it has traversed the distance l1 as


[image: image10.wmf]z

D

y

mv

d

l

qV

v

1

1

1

-

=








III-1

and 
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In the region where the plates diverge, the electric field is more complicated and we’ll use an approximation.  The electric field is inversely proportional to the distance d between the plates at any point 0 < z < l1 .  We will assume that the field has only a y-component.  This approximation is not bad if the beam is near the center of the plates.  So
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In terms of the time at which the beam crosses this point in z, d can be written as:
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So for this region of the plates, the Lorentz Force Law becomes 
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This expression has the form of a differential equation 
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 which can be integrated twice to find the beam’s velocity and displacement in the y-direction.  The result is:
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When the electrons emerge from the butterfly plates they travel a distance L1 in a field-free region and they traverse a distance in the y direction
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And finally the total displacement in the y-direction is:
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where
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So, the displacement of the beam in the y-direction is directly proportional to the deflecting potential, the inverse of the accelerating potential, and a factor F that contains all of the geometry of the field plates.  By measuring the displacement as a function of VA and VD you can experimentally determine F. 

V.  Electron Gun

Fig. III-3 is schematic of the circuit that you will be connecting for the electron gun.  Figure III-2 is a diagram of the potential difference seen by the electron beam as it traverses the gun.  The numbers in both figures correspond to pins on the bottom of the electron tube.  

The cathode (2) of the electron gun is heated by a hot filament (connected through pins 1,14).  Electrons “boil” off the cathode through the process of thermionic emission.  All but the most energetic of these electrons are returned to the cathode because they are repelled by a grid G1 (3) charged to a potential 4.5 volts more negative than the cathode.  This helps to minimize the divergence of the electron beam.  The beam is then accelerated up to ground potential (there is no external connection here but it’s the dashed line to the right of (3) in Fig. III-3).  When the electrons strike this grid at ground potential they produce additional electrons, called secondary electrons, that have much less kinetic energy than the original beam electrons.  The secondary electrons are mostly repelled by the grid (5), which is at a lower potential, but the original electrons have enough kinetic energy to pass beyond it and be accelerated back to ground potential by grid (9).  Grid (9) is much more transparent than the other grid at ground potential and so far fewer secondary electrons are produced at it.  The total accelerating potential is then VA = VB + VC .

[image: image22.wmf]
Figure III-2:  Diagram indicating the potential seen by electrons at various locations in the tube.

[image: image23.wmf]
Figure III- 3:  Diagram of the cathode ray tube and its electrical connections. 
VI.  Experiment with the Electric Field Interaction 

Using Fig. III-3 as a guide, connect up the circuit for this part of the experiment.  To facilitate proper connection the leads from the tube are color-coded, as are the wires.  The various numbers in the diagram refer to the pins on the tube socket.   Note that the connection between B– and C+ is internal to the power supply.  Follow the steps below to complete the circuit:

1.  The heater is fed by the 6.3 V AC supply at HH: this AC supply is inside the power supply. 

2.  The cathode should be connected to the negative side (C–) of the C supply.  The focusing anode

(pin 5) is connected to C  through the internal connection between B and C, and provides the accelerating potential VC.  

3.  The last anode, (pin 9) is connected to B, so the potential between pin 5 and pin 9 is VB and the total accelerating potential is VA=VC+VB .  Adjusting VB provides the bulk of the accelerating potential, while VC  tends to focus the beam, but both contribute to VA .  Use a multimeter to monitor the voltage between C and B+, which gives you a direct measurement of VA . 
4.  The control grid at (3) is supplied by a small (4.5 V) biasing battery connected with the grid that is negative with respect to the cathode, as shown.  (See Caution).

5.  The connections +X and –X will be used to provide the deflecting potential VD . They should both be connected to the power supply Ground (G) for the first part of the experiment. 

As a precaution, a wire should be connected between B+ and terminal G (ground) on the power supply, which is connected to the metal case of the instrument.  In turn, G should be connected to the common building ground on the bench (it is automatically through the third prong on the power cord).  This procedure ensures that the potential at the deflection plates is close to ground potential and thus avoids a shock hazard.  With this setup, a negative potential of several hundred volts, with respect to ground, appears at the both of the biasing battery terminals G1 and C.  Contact with any terminal of this battery or with the associated leads could cause a severe and possibly lethal shock.
Caution:  Do not turn up VB or VC without the biasing battery connected; an excessively bright spot causes excessive heating of the screen by electron bombardment, leading to local destruction of the phosphor.

A.  Aligning the Axis of the Tube with the Earth's Magnetic Field

It is not possible for you to do this experiment without any magnetic field present: the Earth's magnetic field will always be around.  We can reduce the influence of this field by aligning the axis of the cathode ray tube with the Earth’s magnetic field.  Then vz, the largest component of the beam’s velocity, is parallel to the Earth’s field and the vector product term ensures that the Lorentz Force for this component of velocity is zero.

Once connections have been made and checked, put the power supply on STANDBY.  The heater will light up.  After a minute, turn it to ON.  Make sure that both sets of butterfly deflection plates have both plates at ground potential.  Adjust VB and VC to get a small bright spot on the fluorescent screen.  Don’t make the spot too bright or you will damage the phosphor.  Use VC to provide some focusing. 

Now rotate the cathode ray tube on its stand until the bright spot is coincident with the center of the graticule on the fluorescent screen, i.e. so that there is no deflection of the beam during its transit from the gun to the screen.  This lack of deflection means that the beam has acquired no transverse velocity because of an interaction with the Earth’s magnetic field and this can only happen if the beam is travelling parallel to the Earth’s field.

B.  Deflecting the Beam with a Potential on the Plates

Now you should be ready to begin the electric field part of the experiment.  For this, the system for applying the potential differences to the butterfly plates (10 and 11) has to be connected.  The resistor, labelled R, is permanently mounted on the banana plug.  The variable voltage supply for the deflection plates is obtained by using the circuit shown in Fig. III-4.  Connect up this circuit.  Get it checked by your instructor or TA before starting to make measurements. 

[image: image24.wmf]
Figure III- 4:  Circuit used for deflecting potential VD . The two power supplies allow you to provide deflection in both directions. 
VII.  Measurements and Analysis









A.  Geometry

Make measurements of the various lengths and spacings of the field plates and come up with an estimate of the geometry factor F. 

B.  Displacement vs. Deflection:

B.1:  Explore the range of motion you have available for the beam by selecting an accelerating potential VA = VB+VC and varying the deflecting potential VD.  Then, select a fixed value of VB and VC and measure y as a function of VD.

B.2:  Make a plot of y vs VD .  Fit the data using LinFit and plot the fitted result on the graph as well.

B.3:  From the fit, and from your determination of the accelerating potential, VA , determine F and its uncertainty.  Be sure to include an estimate of systematic errors in VA and VD in your determination of F. 

C.  Deflection vs. Accelerating Potential

C.1:   Choose a fixed deflection potential VD, and measure y as a function of VA by varying VB and VC.  (Start with minimum VA and set VD for maximum deflection.)

This relationship is not linear, so it’s convenient to take the natural log of both sides:


[image: image25.wmf](

)

D

A

FV

V

y

ln

)

ln(

)

ln(

+

-

=


C.2:  Plot your data in this form, and carry out a least-squares fit to the data, and plot the fit on the graph as well.  Is the slope what you expect?  From the fit, determine F and its uncertainty.

C.3:  Compare your two determinations of F from the fits.  Do they agree?  How do they compare to your estimate of F from your measurements of the tube geometry?

VIII.  Interaction with a Magnetic Field 

The electrons will interact with a magnetic field that is produced by the two coils mounted alongside the cathode ray tube. 

We can calculate the magnetic field due to these coils on the axis of the cathode ray tube by considering dividing them into “slices”, each of thickness (x.  Taking the “slices” in pairs, we have thin coils with radius a, and N(x/L turns, where N is the total number of turns and L the total length.  The total field is then obtained by integrating over the length of the entire coil.  The result is:
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where x0 is the distance from the end of the coil to the axis of the tube.  See Fig. III-6 for a sketch of the configuration.  The first term of this expression is equal to the field of a long solenoid.

Now we want to look at the magnetic field term in the Lorentz Force Law: 
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The vector 
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.  Since the acceleration, 
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, the electron moves on a circular trajectory.  We can calculate the radius of this circle by equating the centripetal acceleration for circular motion to the acceleration given by the Lorentz Force:
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so 
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Once the electron beam leaves the region where there is a magnetic field, it travels on a straight line until it hits the fluorescent screen.  The geometry of the situation is sketched in Fig. III-5. Examination of the sketch enables one to deduce that:
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and
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where 
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 and the total deflection is 
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[image: image39.wmf]
Figure III- 5:  Geometry representing deflection of the electron beam in the magnetic field.

If the magnetic field strength is small enough such that R is large and 2a << R, then the displacements can be simplified so
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Summing the two and substituting for R gives
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Finally, we can relate the displacement to the accelerating potential using conservation of the energy, and can substitute our expression for the magnetic field to get a displacement that depends only on the charge/mass ratio of the electrons in the beam, the accelerating potential, and a geometry factor G related to the magnetic field. 
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where  
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IX.  Experiment with the Magnetic Field Interaction 

The connections between the power supply and the cathode ray tube are the same as in the first part of the lab. However, in this experiment we would like to be sure that there is no deflecting electric field, so all of the butterfly deflection plates must be kept at ground potential.  This is accomplished by connecting the +X and –X terminals to the power supply ground G.

Connect the low voltage magnet power supply to the two solenoid coils as shown in Fig. III-6.  Check carefully to ensure that the current flows in the same sense in both coils.  The current through the coils is measured with the digital multimeter.

[image: image45.wmf]
Figure III- 6:  Schematic of the magnetic field connections. 
X.  Measurements and Analysis 

A:  Geometry

A.1  From the geometry of the apparatus, estimate G(N,L,L2,a,x0). 

B:  Deflection vs. Magnetic Field Strength.  

B.1:  For a suitable value of the accelerating potential VA, measure the deflection of the beam as a function of current through the magnetic field coils.  

B.2:  Fit the data to a line using LinFit.  Graph the data and the resulting fit.  Do the data behave as you expect?  From the fit, determine G along with its uncertainty.  You will need to determine the electron charge and mass in appropriate units, which can be found from the fundamental constants page of the NIST web site:

http://www.physics.nist.gov/cuu/Constants/index.html
Note that while a complete analysis of the uncertainty in G would include uncertainties in e and m, they are known so well that their contributions are likely negligible.  Be sure to include any systematic uncertainties in y and VA however.

C:  Deflection vs. Accelerating Potential

C.1:  With VA at its minimum such that you can see the beam, adjust I for maximum deflection.  Using this value of I, measure the deflection as a function of the acceleration potential VA. 

C.2:  Make a graph of ln(y) vs. ln(VA).  According to Eq. III-6, this should be linear with a slope of 

–1/2.  Fit the data using LinFit, and plot the fit on the graph as well.  From the fit, determine the geometry factor G.  

C.3:   Compare your two determinations of G with your estimate from the geometry in part A.  Comment on any discrepancies.
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