Experiment II: 

Magnetic Fields due to Currents

I.  References


Halliday, Resnick and Krane, Physics, Vol. 2, 4th Ed., Chapters 34, 35

Purcell, Electricity and Magnetism, Chapter 6

II.  Equipment


Battery eliminator power supply

Helmholtz coils

Toroidal coil

Gaussmeter

Two digital multimeters

III.  Introduction
 

The flow of electrically charged objects is called a current.  One ampère, the unit in which current is measured, is defined to be one coulomb of charge per second passing through a defined surface.  Electrical currents generate magnetic fields, similar to the way that electrical charges generate electric fields.  The magnitude of the magnetic field generated depends of the specific geometry of the wire in which the current is flowing, and sometimes in a complicated way, but for a given geometry, the magnetic field is directly proportional to the amount of current flowing through the wire.  It is this physical relationship that you will study in this experiment.  We will study three different types of geometry: the field of a circular coil of wire, the field that results from two coils with current flowing in either same direction or opposite directions, and the field of a coil that is bent into the shape of a torus.

IV.  Biot-Savart Law and Ampère's Law


Two equations describe the relationship between the electric current and the magnetic field that it generates.  One is due to Biot and Savart: 
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where 
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(= 4 x 10-7 Weber/meter-Ampère) is a constant, the permeability of a vacuum; I is the current in ampères (or Amps); 
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is an elemental vector along the direction of current flow with the unit of length in meters; 
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is the position vector of the point at which the magnetic field is evaluated, with its origin at the position of the elemental length vector (its units are length in meters); and 
[image: image5.wmf]B

r

is the magnetic field vector,  which has units of Tesla or Weber/meter2.  You can think of this expression as a means of calculating the magnetic field generated by a current of magnitude I flowing along a small piece of wire with a length 
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and a negligible cross-sectional area.  The geometry is shown in Figure II-1.  This equation is often referred to as the Biot-Savart Law.

The second equation is 
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where 
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is an elemental length vector along some closed contour in space,
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 is the permeability of the vacuum, I the net electrical current flowing through the area enclosed by the contour of which 
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is an element and 
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is the magnetic field vector.  This is called Ampère's Law.  Whenever the symmetry of the situation makes it possible to choose a contour along which the magnitude B is a constant, Ampère's Law is a convenient way to compute the magnetic field generated by a current I.

[image: image12.wmf]
Figure II-1: Magnetic field due to a current element
V.  Magnetic Field Strength along the Axis of a Circular Current Loop

By using the Biot-Savart Law and following an integration procedure given in some detail in most textbooks on Electricity and Magnetism, one can calculate the magnetic field strength, that is, the magnitude of the vector B generated by a current flowing in a circular loop of radius a at an arbitrary distance from the center of the loop x along the axis of the loop.  See Fig. II-2.

The result is
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If there are N loops close together, all carrying the same current, all having their centers nearly at the same place, and all having their radii nearly the same, a fairly good approximation for the magnetic field is given by
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[image: image15.wmf]
Figure II-2: (a) Field at the center of a circular turn.  (b) Field on the axis of a circular turn.  (c) Lines of B for a circular loop.

VI.  Magnetic Field of Two Circular Coils with the Same Axis 

The magnetic field of two loops can be calculated by summing the fields produced by the two separate coils and shifting the origin of the coordinate system.  A simple case occurs when both coils have the same number of turns and radius and carry the same magnitude of current that does not, however, necessarily flow in the same sense.  Let us suppose that the coils are separated by a distance 2b and that the origin is moved to a point mid way between the coils, but still on the axis.  The field of the two coils is given by
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where the plus sign applies when the currents flow in the same sense and the minus sign when they flow in opposite directions.

VII.  Magnetic Field Generated by a Toroidal Coil 

This field is most easily calculated using Ampère's Law.  Choose a circular contour in the mid-plane of the torus with its center on the major axis of the torus and with a radius R.  See Fig. II-3.  If R is small enough so that all the turns lie outside the contour, no current flows through the area enclosed by the contour and the magnetic field is zero.  If R is large enough to encircle the vertically rising inner part of all the turns, but does not encompass the vertically rising outer part of the turns, then there is a net current passing through the enclosed area and the field is given by
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Here N is the number of turns and I the current flowing in each turn.


[image: image18.png]



Figure II-3: (a) A toroidal coil. (b) View of one-half of a toroidal coil.
VIII.  Hall Effect Probe for Measuring the Magnetic Field 

The probe that you will use to measure the magnetic field uses the Hall Effect to produce a potential difference that is directly proportional to the strength of the magnetic field.  The meter reading attached to the probe is in turn proportional to the potential difference.  The Hall Effect is a consequence of the Lorentz Force Law that you will study in the next experiment.  A brief sketch of the effect is given in Fig. II-4.  If, in a flat rectangular wire, as shown in Fig. II-4, there is a current flowing perpendicular to a magnetic field, then there will be a transverse force acting on the charge carriers which is perpendicular to both the current and the magnetic field.  The carriers will be deflected by this force and accumulate on one side of the wire.  This excess of charge on one side of the wire will produce an electric field that counteracts the effect of the transverse force.  When the force on the carriers due to the electric field (transverse to the current) exactly balances the force due to the current flowing perpendicular to the magnetic field, an equilibrium is reached.  The equation for the equilibrium is
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where q is the charge on the carrier and n is the carrier density.  We can calculate the electric field from the potential difference in the transverse force direction
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[image: image21.wmf]
Figure II-4: Illustrating the Hall effect.

Substituting for E in the first equation gives us the equation we want
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Thus if I and the carrier density are fixed, the voltage difference produced across the probe is directly proportional to the strength of the magnetic field.  If the direction of B is reversed the sign of the potential difference is also reversed.  If B is not perpendicular to the current only the perpendicular component of B contributes to producing the potential difference across the probe.  Two probes are supplied.  One is used to measure magnetic fields parallel to the long axis of the probe and the other is for fields perpendicular to the probe axis.  The “parallel” probe is cylindrical and the “perpendicular” probe is flat.  Consult the probe manual to where in the probe is the location of maximum sensitivity. 

Note that the Hall voltage, VH, is tiny, on the scale of nanovolts.  It is thus very sensitive to contact potential and sources of noise.  There is an offset adjustment on the Gaussmeter to account for small offsets with no magnetic field present, and this must be checked regularly throughout the experiments.  In addition, the response of each probe is slightly different because it depends on the probes exact geometry, so each probe needs to be calibrated with the calibration procedure outlined in the Gaussmeter manual.  

IX.  The Experiment










This experiment consists of three parts.  In each part you will measure along a line in space the magnetic field generated by a current flowing in one of the electromagnets.  The Bell Gaussmeter (it really should be called a Teslameter, gauss is a cgs unit) will be used for making the measurement.  Read the manual of the Gaussmeter carefully so that you know how to use it.  Calibrate your Gaussmeter before using it, following the instructions in the manual.  Note that you can use the second multimeter across the voltage terminals of the Gaussmeter power supply in order to get a more precise measurement of the field. 

The circuit you will use is shown in Fig. II-5.  Leave the switch open unless you are actually taking a measurement.  The magnet gets too hot if the current is allowed to flow for an extended period.   Work out a sensible strategy for deriving the position of the Hall probe-sensing element from measurements that you can make with the translation stage and other equipment.  On the multimeter, use the terminals capable of measuring 10A.

[image: image23.wmf]
Figure II-5: Basic circuit to use for the three experiments

Part A:  A Single Circular Coil

A.1:  Set the probe at the center of the coil and measure the strength of the magnetic field there as a function of the magnitude of the current flowing in the coil.  Reverse the direction of the current flow and see if the direction of the magnetic field reverses.  

Make a plot of B vs. I.  Fit the data to a line using LinFit, and plot the fitted curve together with the data.  Be sure to include the random uncertainties in B and I in your fit.  What do the slope and offset of the fit correspond to?  From the slope, determine the number of coils N and its uncertainty.  Be sure to account for both random and systematic uncertainties in the determination of the uncertainty in N.

A.2:  Choose a reasonable value of current, and at that value, measure the magnetic field strength as a function of position along the axis of the coil.  Make sure that you traverse a distance of several cm on each side of the coil. 

Make a plot a graph of B versus x.  Be sure to include uncertainties on each axis.  

These data can also be fit to a straight line if one takes the natural log of both sides of Eq. II-4: 
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Note that this expression assumes x=0 at the center of the coil.  Make a plot of ln(B) vs. ln(a2+x2).  If you have accurately located the center of the coil, your plot will be a straight line.  If not, it will curve back on itself.  Use this information to make any necessary adjustments to your determination of the coil center.

A.3:  Fit the data using LinFit and plot the fitted curve along with the data.  Be sure to use MKS units!  If the theory is correct, you should get a slope of 3/2.  Compare your fit to expectation.  Since you measured I and you can estimate a, the value of the intercept will allow you to calculate N along with its uncertainty.  Be sure to include both random and systematic errors in determining the uncertainty in N. 

A.4:  Count the number of turns in the coil to get an approximate value for N.  Compare the counted value with the one obtained from the intercept.  Since the coil has a finite extent in both the axial and radial directions, it is not so clear what x and a should be.  You should work out a solution to this dilemma.

Part B:  Magnetic Field Due to Two Circular Coils

In this section you will be sending current through the two coils with the current in the same direction in each coil and also in opposite directions. Before starting to make measurements, come up with a qualitative prediction for what you expect to see based on Eq. II-5.  Discuss your prediction with your instructor.

B.1:  Now connect up the circuit so that the current flows through the two circular coils in the same sense ( i.e. so that the current enters each coil at the red terminal post).  Locate the Hall probe sensing element at the center of one of the coils and adjust the current to give an easily measured field strength.  Then measure the field strength as a function of position along the axis of the coils from before the center of one coil to past the center of the other coil.

B.2: Make a plot of B vs. x. Be sure to include uncertainties in B and x.  Make a column that contains a calculation of B vs. x using Eq. II-5 and add it to the plot.  Note that in this equation, x=0  is now defined to be exactly between the two coils, so you will need to make adjustments to your measurement of the probe location accordingly.  

B.3:  Now send the current through the coils in the opposite sense (i.e. so that the current enters one coil through the red terminal post and the other through the black terminal post).  Once again measure the magnetic field strength along the axis of coils from the center of one to the center of the other.  Plot B vs. x. Make a column of a calculation of B vs. x and plot it on the same graph. 

Part C:  Magnetic Field of a Toroidal Coil

C.1:  With the “perpendicular” probe in the center of the windings of the toroidal coil, adjust the current to give an easily measured field strength.  Reverse the direction of the current and see if the magnetic field reverses direction.  Then measure the magnetic field strength as a function of R from outside the windings at small R to outside the windings at large R.

C.2:  Again, by taking the natural logarithm of each side of Eq. II-6 you can get an expression that is linear: 
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Graph  ln(B) vs ln(R).  Fit the data using LinFit, and compare your fitted slope to expectation.  Derive the value of N from the intercept, along with its uncertainty.   Count the number of turns and compare your data to your count.  
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