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Complex impedance method for AC circuits

An alternating current (AC) circuit is a circuit driven by a voltage source (emf) that os-
cillates harmonically in time as V = V0 cosωt. In the physical regime where non-linear
effects can be neglected, the response is linear. Thus, aside from transients, the current also
oscillates harmonically, and takes the form I = I0 cos(ωt−φ). The amplitude I0 and phase
φ are determined by the driving voltage and the nature of the circuit.

The amplitude of the current is linearly related to the amplitude of the voltage, but
the phase angle is determined by a trigonometric equation. These relations can be very
conveniently combined into a single linear relation by expressing the voltage and current as
the real parts of complex quantities

V̂ = V̂0 exp(iωt) and Î = Î0 exp(iωt), (1)

with V̂0 = V0 and Î0 = I0e
−iφ. We use the hat notation to indicate a quantity that is

a complex number. The impedance Z is defined as the ratio of the complex voltage and
current amplitudes:

Z =
V̂0

Î0

=
V0

I0
eiφ. (2)

(Since Z is almost always complex we don’t bother to put a hat on it.) The complex voltage
V̂ and current Î (1) thus obey the linear relation V̂ = ÎZ, which is a complex generalization
of Ohm’s law, V = IR.

The impedance is most directly interpreted when written in polar form, Z = |Z|eiφ.
The magnitude |Z| = V0/I0 is called the reactance, and it determines the real amplitude of
the current given the real amplitude of the voltage. The phase φ of Z encodes the phase
relation between voltage V0 cosωt and current I0 cos(ωt− φ).

Circuit elements

Each type of circuit element is characterized by its own impedance.

Resistor

The current in a resistor R is governed by Ohm’s law, V = IR, so the impedance of a
resistor is just the resistance,

ZR = R. (3)

The reality of ZR expresses the fact that the current in a resistor is in phase with the voltage
across it.
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Inductor

For an inductor we have V = LdI/dt. Substituting the complex voltage and current (1)
yields the relation V̂ = (iωL)Î, so the impedance of an inductor is given by

ZL = iωL. (4)

The impedance of an inductor differs from that of a resistor in two ways: it depends on
frequency and it is an imaginary number.

The dependence of ZL on the frequency arises from the fact that the voltage is propor-
tional to the derivative of the current rather than the current itself. Note that at higher
frequencies the impedance of an inductor is larger, so for a given current the voltage is
larger. This reflects the fact that at higher frequencies the current changes more rapidly, so
the magnetic flux through the inductor changes more rapidly, so the induced emf is greater.
At lower frequencies on the contrary, the inductor behaves more like a short circuit, since
it presents less opposition to a slowly varying current.

The fact that ZL is imaginary reflects the fact that the current is π/2 out of phase
with the voltage. The voltage is proportional to the derivative of the current, hence if
the voltage oscillates as cosωt the current must oscillate as sinωt = cos(ωt − π/2). The
voltage therefore leads the current by π/2. This is why the phase of the impedance is π/2:
ZL = iωL = ωLeiπ/2.

Capacitor

The analysis for a capacitor is similar to that for an inductor. For a capacitor V = Q/C,
hence dV/dt = I/C (since I = dQ/dt). Substituting the complex voltage and current (1)
thus yields iωV̂ = Î/C, or V̂ = Î/iωC. The impedance of a capacitor is thus given by

ZC = 1/iωC. (5)

Like for an inductor, the impedance of a capacitor depends on frequency and is an imaginary
number. However, the dependence is inverted, since the voltage is proportional to the anti-
derivative of the current rather than the derivative. At higher frequencies the impedance
of a capacitor is smaller. This reflects the fact that the current reverses more quickly, so
the capacitor has less time to fill with charge, so it behaves more like a short circuit. At
lower frequencies, on the contrary, the impedance is greater since the charge builds up and
capacitor behaves more like an open circuit.

The phase shift for a capacitor is opposite that for an inductor: the voltage lags the
current by π/2, so the phase of the impedance is −π/2: ZC = 1/iωC = (1/ωC)e−iπ/2.

Combining impedances

The beauty of the complex impedance method is that the impedances add in series and
in parallel exactly as do resistances. In the series case, Z = Z1 + Z2, and in the parallel
case 1/Z = 1/Z1 + 1/Z2. This means that any circuit can be reduced to a single equivalent
circuit element, with a complex impedance that is neither purely real nor purely imaginary.
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Power

As with a driven mechanical oscillator, it is useful to know how much power is absorbed by
an AC circuit driven by an external potential V = V0 cosωt. The work done by the external
potential in driving a charge q through a potential difference V is qV . Therefore the rate
of doing work on the charges in a circuit, i.e. the power, is P = V dq/dt = V I. In an AC
circuit, just as in a mechanical oscillator, the sign of this oscillating work is not in general
constant in time. What is relevant is the average power 〈P 〉 = 〈V I〉.

Let us see how the average power depends on the impedance and the voltage. To
compute this average we cannot use the complex quantities V̂ and Î since the product V I
is not linear. We must first extract the real parts, then multiply and take the time average.
The real current is given by I = Re[(V0/Z) exp iωt] = (V0/|Z|) cos(ωt − φ) where φ is the
phase of Z. Since 〈cosωt cos(ωt− φ)〉 = (1/2) cosφ, the time average of the power is

〈P 〉 = (V 2
0 /2|Z|) cosφ. (6)

For a pure capacitance or pure inductance, Z is pure imaginary, so φ = ±π/2, so the average
power is zero. That means that no energy is dissipated in those circuit elements. They store
energy but they don’t dissipate it. For a pure resistance Z = R is real, so φ = 0, so the
average power is 〈P 〉 = V 2

0 /2R. This may not immediately look like the usual relation for
DC circuits, P = V 2/R, but it is in fact equivalent, since the average value of V 2 is just
V 2

0 /2.
Introducing the root mean square voltage

Vrms =
√
〈V 2〉 = V0/

√
2, (7)

the average power (6) can be written as 〈P 〉 = (V 2
rms/|Z|) cosφ. The rms voltage and

current are the quantities usually referred to for AC circuits, rather than the amplitudes
themselves, which are a factor of

√
2 larger.

Generalizations

The method of complex impedance is applicable to any system whose response is linearly
related to an input. Since almost all systems have a linear response near an equilibrium
configuration, the method is almost universally applicable.
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