Experiment 5

Free Fall of a Mass

I. Purpose: 

In this experiment, you will again study one-dimensional motion of an object under the influence of gravity.  In this case the motion is free-fall.  The purpose of this lab is to develop experience with optimization of an experiment, with systematic errors, and with the least-squares technique of fitting data to theory.

II. Equipment

Support stand with electromagnet


Two optical gates 

steel ball 





plastic container

computer interface box  and cables


control box for gates and electromagnet

LoggerPro 





Excel Spreadsheets

Vernier calipers

III. References

For a review of fitting and errors, see Lyons, or Appendix A of the lab manual.  You may again need to review the physics of motion in one dimension under the influence of the force due to gravity. Recall the basic kinematic expressions for an object moving with constant acceleration are
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where 
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 are the location and velocity of the object at time t0 .

IV. Experiment

An overview of the experimental apparatus is shown in figure 1.   A support stand has an electromagnet that is used to hold a steel ball and release it on command. On its way down, the ball passes through two optical gates. The optical gate consists of a beam of light transmitted from one side of the gate and a light-sensitive receiver on the other side of the gate.  A voltage signal proportional to the intensity of the light hitting the receiver is sent to the computer via an interface box.  When the ball passes through the gates, the light beam is interrupted, and the voltage briefly disappears.  This gives the computer a precise time stamp associated with the ball passing a specific location along the support stand.

To acquire data in the computer, you will be using the LoggerPro software and two voltage probes. One probe reads the voltage of the two optical gates, and the other probe and the other acts as an external trigger to indicate to LoggerPro that it should start acquiring data as soon as the magnetic switch is released.   When you release the switch, the current going to the magnet (which is read as a voltage) is interrupted. When this signal on probe 2 becomes greater than 0.2 volts, LoggerPro will begin acquiring data. 







Figure 1:
Apparatus for Free-fall experiment

A. EXPERIMENTAL SETUP

Look closely at an optical gate and its mount.  You need to develop a model for how you can relate the location of the gate with respect to the scale on the vertical support stand, and how well you can do it (e.g.,  the uncertainty in y).  You also need to precisely determine where the ball is located with respect to the vertical scale when it is resting on the magnetic switch.  You may need to know the radius of the ball, R, which you can determine by measuring the diameter of the ball with a set of calipers.  

Set the apparatus up with two optical gates somewhere below the magnetic switch.  The first gate should be very close to the switch. Energize the electromagnet and place the steel ball against it.  The ball should “stick”, because the magnetic force holding the ball in place is stronger than the force due to gravity.  Place the plastic container directly under the ball at the base of the support, so that when the ball drops it falls into the container.  Release the ball a few times to get a feel for how the magnetic “switch” works.  Be sure that the ball will pass cleanly through both optical gates before releasing the switch.

Start LoggerPro.  From the file menu, choose the setup called “Free Fall”: this will initialize LoggerPro with the correct settings and readout.  Check under the “Setup/Data Collection” menu that the following parameters are set. 

1. Under “Sampling” you should have a sampling rate of 1000 samples/sec and a sampling time of 0.5 seconds. 

2.  Under “Triggering”, you should have Triggering enabled, with Potential 2 greater than 0.2 V 

3. Place the ball on the magnetic switch. Press the “Collect” button in LoggerPro. You will see that LoggerPro is waiting for a trigger.  Release the ball.  After 0.5 seconds, LoggerPro should stop and display your data.

QUICK CHECK OF THE PROCEDURE:

QUESTION A1: 

Take a look at a plot of the data you acquired.   The horizontal axis will be “time”, and the vertical axis will be voltage. Estimate the time at which the ball crossed the lower optical gate.  Assuming that the clock is started when the magnet releases the ball, that the initial velocity is zero, and that the balls starts at the coordinate 
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, (which is not zero as can be checked by examining the apparatus), then the equation for free fall becomes:
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Using your estimate and your measured vertical position of the gate, you can calculate g.  How does your measured value compare with the accepted value of 9.80 m/s2?  Show your instructor your calculated value of g. 

B. Acquisition of Experimental Data with Two Gates

PROCEDURE 

1) Set the upper gate (“A”) near the top of the stand, about 3 cm below the magnetic switch. Align the lower gate  (“B”) several centimeters below it and be sure to secure them both tightly in place.  Measure and record the positions of both gates.  Connect the cable from the B optical gate to the back of the control box. 

*note:  If you leave the ball attached to the magnetic switch for too long, the ball, which is made of steel, becomes magnetized and does not fall right away when the magnet gets de-energized.  So you should wait to put the ball on the switch until just before you want to release it. 

2) Record data for a total of five positions of gate B, keeping the location of gate A fixed. You should think about what would be good choices for the five locations of the B gate, and be sure to carefully record its location for each data set.  Use the same LoggerPro settings for each data set, and cut and paste each data set from LoggerPro to your Excel spreadsheet.  Inspect each of your data sets using the plot feature of LoggerPro to be sure they look reasonable.  

PLOT B1:

Make a graph of the data from one of the drops, zooming in on the location of the drop, and show your instructor.

QUESTION B1:

The pulse corresponding to the ball crossing the optical gate should have a trapezoidal form. Explain why the pulse might have this shape.  Discuss with a classmate how you might best determine the time corresponding to the ball crossing the gate and the uncertainty in your measurement.  You might want to consider the fact that you can likely better determine when the ball enters and exits the gate compared with when it is completely blocking the path of the light beam.  You can use this information to more accurately determine the center of the pulse:  whatever method you choose, it must be consistent with your determination of y.  Once you have decided on how best to determine t, tell your instructor.  Then, using the crossing time of gate A, determine a mean <t>, a standard deviation t , and a standard deviation of the mean for the 5 drops.

QUESTION B2:

From your measurements of the gate locations, determine y and y for the location of gate A and for the 5 locations of gate B.  You will need to estimate the uncertainty in y.
QUESTION B3:

What are the possible sources of error in determining g?  Show by propagation of errors how 

y and t affect the uncertainty in g.  You should derive the following expression, and show your instructor: 
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Which is the larger contributor to the uncertainty in g, the uncertainty in y or the uncertainty in t?  Do these two uncertainties account for the deviation of your estimate for g from 9.80 m/s2 ?  If not, there may be some source of systematic error that has so far been neglected: discuss possible sources of systematic error.  

C. Analysis #1: Falling from Rest through 1 gate

In this step, you’ll use only the data from gate B, ignoring the data from gate A.  By measuring the time it takes for a ball to drop, from rest, to a number of different locations, we can determine the ball’s acceleration during its free-fall.  The equation for free-fall in the earth’s gravitational field is: 
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Again, assuming that the clock is started when the magnet releases the ball, that the initial velocity is zero, and that the balls starts at the coordinate 
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, (which is not necessarily zero, as can be checked by examining the apparatus), then the equation for free fall becomes:
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By fitting your data for y to a quadratic equation, you can determine g. You can do this using the Excel macro ParaFit.xls. Open the file ParaFit.xls (see Appendix F).  Enter your values of (y,y) and (t,t ) in the appropriate location, and execute the macro ParaFit.  From this you will get values for the three parameters in the function  (yy0 ) = A2(tt0)2 + A1(tt0)+ A0 , their corresponding errors, and 2.  Note that Parafit assumes that the column labeled “x” is the independent variable, and “y” is the dependent variable, although it will properly account for errors in both variables.  If you assume that the ball is released from rest at t0 =0, then the two parameters A0 and A1 can be fixed to 0.  You should also do the fit allowing the parameters to vary to test your assumption. 

REDUCED 2 

Note that ParaFit calculates a quantity called “reduced 2, which is the total 2 divided by the number of “degrees of freedom”.  The number of degrees of freedom is defined to be the number of data points minus the number of constraints you place on the data when calculating 2.  For example, when we find an average value of N data points, we use the data to determine the average.  When we then determine 2, we are placing one constraint on the calculation of 2 because we are comparing the data to a quantity derived from the data set.  This is equivalent to fitting the data to a horizontal line.  So rather than compare the magnitude of 2 to N, we should in reality compare it to N1.  For a straight line, there are two parameters in the fit if both the slope and the intercept are allowed to vary, so there are two constraints, so we should compare the value of 2 to N-2.

Once you have performed the fits, copy the output tables of its worksheet into your own Excel workbook.  

QUESTION C1: 

How many degrees of freedom are there in your two fits?  Find P(2, ) using CHIDIST, where  is the number of “degrees of freedom” in the determination of 2. 

PLOT C1:

Graph your data and the best of the two fits, and show your instructor.  Use the errors in both the independent and dependent variables on the data.

QUESTION C2:

From the slope determined by ParaFit, determine the value of g and its error.  Compare this to the expected value of g.  Does your data agree with the accepted value?  Explain. 

QUESTION C3:

Which set of errors, those in y or those in t, contribute the most to your uncertainty in the determination of g?  

D. Analysis #2: Falling from Rest through 2 gates

In the first version of the analysis, we made an assumption that the ball is released by the magnetic switch from rest, and that at the moment the ball is released, the only force acting on the ball is gravity.  This is in fact not necessarily true because of the magnetic field associated with the switch.  Also, the exact vertical location of the ball can vary a little from drop to drop depending on how the ball is hanging from the magnet.  In this version of the analysis we’ll try to get rid of these potential sources of systematic error.  Rather than relying on only 1 optical gate, you will use 2 gates and determine both v0 and g using a fit to a quadratic equation.  For this case, we may take y0 to be the location of the upper gate, so t0 iswhen the ball crosses this gate.  It is not necessarily the case that v0 = 0.  By using data with several different positions of the lower gate, but leaving the upper gate fixed, you have varied y, but v0 should be about the same for all data sets.  The data can then be fit to
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again.  But now, since you know that (yy0 ) = 0 at t=t0 , you can fix A0 = 0.

QUESTION D1: 

Repeat your fit using ParaFit using the data from both gates as described, and extract a value of g and v0 , their associated uncertainties, and 2 and P(2, ) for the fit.  Do this for both the case where A0 is allowed to vary and when it is fixed at A0 = 0.  How many degrees of freedom are there in each case?  As before, perform the fits inside ParaFit.xls, then copy the output tables to your spreadsheet. 

QUESTION D2:

Assess the quality of your experiment based on your results for 2 . Be sure to explain your assessment in complete sentences.

PLOT D1

Make a plot of your data and the fit, and show your instructor.

QUESTION D3: 

How does your value of g determined with this method compare to what you got in part B?  Make an assessment of the relative merits of the two methods (C and D) for determining g, and discuss possible sources of error in the two cases.

V. Homework

1.  Complete any part of the analysis that you did not finish in class.

2.  For each function f below, compute the partial derivatives (f/(x and (f/(y.


a)  f = 5x2


b)  f = Ax2y + B


c)  f =   (x2 + y2 )1/2

d) f = ln(xy)

e)  f = A/x + B/(y1/2 )

magnet
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gate





gate
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