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 Statistics of Random Decay

I. Purpose  











 
In this experiment, you will use a Geiger counter to make repeated measurements of the number of decays that happen in a given time interval.  You will then do statistical analysis on your results and find that the number of counts n varies randomly from one measurement to the next, with a standard deviation which is given by the square root of the number of counts.   

II. Equipment











Geiger Counter


Gamma ray source

Excel Spreadsheet 




III. Introduction











Radioactive decay is a random process, characterized by a mean lifetime .  This means that if we have a large sample of N identical unstable nuclei, then on average Nt/ will decay in a time interval t.  


For this Experiment, it is important to realize that radioactive decay is a random process.  What this means is that we don’t always get exactly the expected number of decays.  Instead, the number of counts we observe in any given time interval will be larger or smaller than the expected number by an unpredictable amount.  For example, if we expect that 0.01% of our sample will decay in one second and we have a sample of 106 nuclei, we would expect on average 100 decays.  For a random decay process where N events are expected, the number of counts we actually observe should have a standard deviation  = N1/2.  So in our example we would expect to see "100 ± 10 counts".  What this notation means is that about 2/3 of the time we should expect to see between 90 and 110 counts, while 1/3 of the time we should expect to see more than 110 counts or less than 90 counts.

Ionizing Radiation
Radioactivity is produced when the nucleus of an atom decays.  The decay products can be electrons, positrons, gamma rays, or alpha particles.  These decay products interact with matter by "ionizing" atoms (this means knocking out some of the electrons from the atoms they interact with).  With the appropriate apparatus, the ionized atoms and the ejected electrons can be easily detected.  However, if radiation is absorbed in living tissue, then biological damage can result.

 Radiation
In this experiment, you will be detecting gamma () radiation.  Gamma () rays are the most energetic part of the electromagnetic spectrum.  They are photons with very short wavelengths and therefore carry more energy than light or even x-rays.  Gamma rays are neutral and therefore do not ionize atoms in the same way that alphas or betas do.  Gamma rays interact with matter in several ways.  As they pass through material they may knock electrons out of atoms via the photoelectric effect or Compton scattering.  At high energies they may even create electron-positron pairs.  The net result of these interactions is that a gamma ray loses energy suddenly, not continuously like a  or .  Gamma rays can travel an appreciable distance through matter before transferring most or all of their energy to an electron, which then loses energy through ionization.

The Geiger-Müller Counter

You will detect radioactive particles with a Geiger-Müller counter that records a pulse or count whenever a particle ionizes the gas in the detector.  The Geiger-Müller counter is a cylindrical tube with a thin wire at the center (see Figure III.1).  The tube is filled with Argon gas and a small amount of CO2.  A large positive voltage is applied to the wire and the cylinder is at ground.  When the gas inside is ionized by radiation, the free electrons are accelerated toward the wire.  They in turn ionize more gas atoms which start an electrical discharge in the gas.  A large amount of charge then flows to the wire and an easily detectable signal is produced.  The counter you have counts and displays the number of signals received.
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Figure III.1  Geiger-Müller Counter and Control Box

IV. Experiment










V. 
Description of the Apparatus

Figure III.1 shows a picture of the apparatus you will use for measuring radioactive decays.  The components are a Geiger-Müller (G.M.) tube and a control box.  The control box supplies the high voltage to the G.M. tube and counts the pulses that the tube produces when penetrated with charged particles.  Samples containing radioactive materials can be loaded into a sample holder and placed directly under the thin window of the G.M. tube. 




    WARNING: Do not touch the thin window on the GM tube;




 it is quite fragile and breaking it could expose you to high voltage.

A. 
Setting the High Voltage and Collecting Counts





1. The first thing you need to do is find the optimum voltage for operating the G.M. tube. Use the gamma ray source you have been given.  This gamma ray source has a half-life of 5.2 years and an activity of 1 Ci (the symbol Ci means "micro-curie" where 1 Ci = 3.7 x 104 disintegrations/sec). 

2. Insert a source tray containing your gamma ray source in the uppermost slot of the sample holder.

3. Now start at 100 V and slowly raise the voltage until you see the counting rate rise sharply.  The proper voltage is about 75 V above the level where you see this initial sharp rise.  Use this operating voltage for the remainder of the lab and record it in your spreadsheet. 



WARNING:  Never exceed 850 V under any circumstances 



 

   or you may damage the G.M. tube.

4. Set the timer for 30-second counting intervals.  Pushing the start button begins the counting interval.   The stop light comes on when the 30 seconds has elapsed.   Read and record the count total.   Press the reset button.  Then press start to count for the next 30 second interval.


Even without using your gamma ray source you will accumulate some counts in a 30 second interval.   This is because cosmic rays are counted by the G.M. tube and because the environment, including you, is radioactive, which produces nuclear disintegrations detected by the G.M. tube.   You need to subtract this background level of counts from the data that you get with the source.   Remove the source from its holder and place it about 1 to 2 meters away from the tube.   Record the background counting rate for 10, 30 second counting intervals.   Find the average number of counts.   This average number of background counts will be subtracted from the number of counts you get with the source, to get the true source counting rate.


Now return the source to its holder and count for 40, 30 second intervals.   Record the number of counts in your spreadsheet.  

PART B: Quick Check of the Data






The Big Picture: In this section you will examine your data and make a couple of quick checks on the main parameters.  In the next part, you will use these rough estimates to check whether the exact calculations are reasonable.

QUESTION B1.  You just spent 20 minutes counting decays.  Take a look at all of your data and roughly estimate the average number of counts <n> in a 30 second interval.  DO NOT USE THE AVERAGE FUNCTION OR ANY OTHER EXCEL FUNCTION.  Just look down the list and get some sense for what a typical count is.  The point of this exercise is to figure out roughly what the average should be.

QUESTION B2.  Roughly determine the standard deviation  of the number of counts in a 30 second interval.  DO NOT USE THE STANDARD DEVIATION FUNCTION OR ANY OTHER EXCEL FUNCTION.  The easiest way to do this is to use the fact that a typical measurement should be within about 1 standard deviation of the average.  To proceed, pick any data point and find how much it differs from the average you estimated in Question B1.  This difference is an estimate of the standard deviation in the data.  You should do this for a few points, finding the differences in your head, and get a good feel for what the typical deviation from the average is.

QUESTION B3. For a random decay process, one expects that the standard deviation in the number of counts should be roughly the square root of the number of counts.  Compare your estimate for  with the square root of your estimate for <n>. To make the comparison you will have to calculate the standard deviation of the standard deviation, 
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.   Explain briefly what you find and show your instructor.

QUESTION B4. We told you how many disintegrations per second occur in the source in A1.   You have measured how many you detect in periods of 30 seconds.   What fraction of the disintegrations does you G.M. tube detect?

PART C: The Distribution of Counts






The Big Picture: In this part you will find how your counts are distributed.

PLOT C1.  Make a histogram that shows how your counts [counts with source – average of background counts] are distributed.  The easiest way to do this is to take a quick look at your data and find the maximum and minimum number of counts. Then set up a column with about 10 bins that spans this maximum-to-minimum range.  Use the Histogram function (under the Tools menu) to compute the histogram.  Designate the bins by the maximum number of counts in that bin.   Plot the histogram and then show your instructor.  Make sure you include titles on each axis ("number" or "frequency" along y, and "counts" along x).

QUESTION C1: Using a few complete sentences, briefly describe your plot of the histogram.

QUESTION C2: Examine the histogram and roughly estimate the average number of counts <n>.  Comment briefly on how this compares to the rough estimate you found in Question B1.

QUESTION C3:  Examine the histogram and roughly estimate the “half width at half maximum” (HWHM).  You can roughly estimate this as follows.  Your histogram should be a little bit peaked in the center.  Find the number of counts in the tallest bin.  Then find a bin that is about half as tall.  The difference in the number of bins from the central bin to the bin that is half as tall, times the bin width, is approximately the HWHM.  When looking at a distribution, this should qualitatively be about the same as the sigma for the distribution.  Comment briefly on how this compares to the rough estimate you found in Question B2 for the standard deviation.  

THE HISTOGRAM IS A SAMPLE DISTRIBUTION.

The points in the histogram give the total number of times a given range of counts appears in your data set. Your new plot is a "sample distribution" because you found it by taking a finite number of samples (measurements of the counts) of the system's behavior.   This particular sample distribution is a frequency distribution.   The mean of the sample distribution should correspond to approximately the mean number of counts in a 30 second period, and the HWHM of the sample distribution is approximately the uncertainty in a single 30 second measurement.

PART D: Statistical Analysis







In this section you will describe and compare your parent and sample distributions. Of course, you should not be too surprised that is does not look exactly like the parent distribution.  The exact number of counts is quite unpredictable, and thus there is no guarantee that after 40 measurements you will see exactly the expected number of occurrences of counts. 

1. Use Excel to find the average number of counts in a 30-second interval <n>, the standard deviation the standard deviation of the average, 
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QUESTION D1:  Compare  with [image: image6.wmf] 

<n>

.  Explain briefly what you find and show your instructor.

2. Add a new column which contains the running average of the number of counts.

PLOT D2: Make a plot of the running average of the counts versus the number of trials.

QUESTION D2:  For the first point in your running average, you "averaged" 1 measured point (the number of counts in your first measurement) with itself.  For the second point in your running average, you averaged two measured points together, ...for the m-th point in your running average, you averaged m measured points together.  

(a) What is the statistical uncertainty in each 30 second measurement of the counts? 

To answer this question one needs to notice that the standard deviation of the set of 40 measurements you made is an estimate of the uncertainty in any one of these measurements.



(b) What is the statistical uncertainty the m-th point in your plot of the running average?  

PLOT D2': After answering Question D2, add error bars (with size given by the statistical uncertainty) to your plot of the running average. 

QUESTION D3: Are the error bars in your plot consistent with the fluctuations you observe in the running average?  

QUESTION D4: What analysis could you do on your data to answer Question D3 precisely?

3. The parent distribution for the radioactive decay phenomenon is the Poisson Distribution.   Excel does have a function to calculate this function, POISSON, but unfortunately it cannot handle the large numbers that occur in this data.   Since the number of counts that you observe is reasonably large, the factorial in the expression for the Poisson probability can be replaced by Stirling’s formula (if n > 10).


The result is:
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Where n is the number of counts and <n> is the average number of counts.


On a second sheet in your Excel workbook, calculate the Poisson probability for the range of counts in your measurements.

4. For the range of counts in each of your bins, sum up the probabilities to find the probability a count being in that bin.

5. Now that you have the total probability for appearing a bin, you can calculate a theoretical frequency distribution and its uncertainty just as you did in the previous experiment.   The average frequency in a bin is given by:
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and the square of its uncertainty is:
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Where N is the number of measurements, n  is the maximum number of counts in that particular bin and P(n) is the total probability of appearing in that bin.

PLOT D3: Make a plot of the measured frequency distribution and the theoretical frequency distribution with its error bars on the same graph.

QUESTION D5:  How well do the two distributions agree?   Comment.

6. Now calculate Chi-Squared for the two distributions.   Then calculate CHIDIST.

QUESTION D6: What do the chi-squared value and the CHIDIST value tell you about the quality of the fit between the sample frequency distribution and the theoretical frequency distribution which was derived from the parent Poisson Distribution? 

V. Homework Problems










To be turned in by  e-mail by 6 PM Friday.  Send as an attachment to your instructor.

1. Correct any parts of the analysis which you did not get right in class.
2. A radioactive sample has 1020 atoms in it.  Assume each atom has a mean lifetime of 3*1016 seconds (about 1 billion years). (a) On average, how many decays will there be in 1 second. (b) What is the standard deviation in the number of decays?

3. Two students are measuring radioactive decay from two samples.  One student measures decays for one second and finds 1000 counts, while the other student measures for one second and finds 1100 counts.  Is the difference in the number of counts significant ?  Explain briefly.   
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