Appendix B:   Simple Harmonic Motion






Simple harmonic motion serves as a model for many important physical systems.  You will repeatedly encounter such systems as you study physics and other sciences.  There are many examples of systems that display simple harmonic motion, ranging from atomic vibrations in a crystal, to resonant electrical circuits, and to the oscillations of buildings during earthquakes.  All of these phenomena follow equations that are very similar to one another, and this is why it is useful to study the simple mechanical oscillator in some detail.


In this experiment, you will study the motion of a mass hanging from a spring. Suppose first that there is no mass m hanging from the spring, then the spring will have a length Lo, its rest length or unstretched length, and the end of the spring will exert no force.  If we now hang a mass m from the spring, the spring will stretch because gravity will pull down on the mass with a force of magnitude mg.  We can call the length of the stretched spring L, and we say that it has stretched by a distance x from its rest length, where:





x=LLo

Notice that with this definition, x will be positive if the spring is stretched (longer than its rest length) and negative if the spring is compressed (shorter than its rest length). According to Hooke's law, when an ideal spring stretches by a distance x, the force Fs which the spring exerts on the mass will be





Fs = kx.






[B.1]

where k is the spring constant.  The negative sign means that when x is positive (spring is stretched), the force is negative and thus the direction of the force is opposite to the direction the spring was stretched. For example, in Figure B.1, pulling the mass down, produces a force which is up.  


Now suppose that the mass is just sitting there attached to the spring, and not bouncing up and down.  Since the mass is not accelerating, the total force on the mass must be zero (from Newton's first law).  When the mass is at rest, the only forces acting on the mass are the force from the spring and the force Fg from gravity.  Thus we can write:




Ftotal = Fg + Fs = 0 .






[B.2]

The force of gravity on the mass m is just Fg=mg.  Notice that Fg is positive since it points down and we have defined the positive x as being when the spring is stretched longer (i.e. down).  

Substituting Equation B.1 for the force due to the spring, and rearranging the above, we find:





kx = mg .






[B.3]

 You will use this equation in Part B to find the spring constant k.


Of course, there is something else that the mass and spring system can do.  If you give the mass a push, it will start to oscillate up and down.  As it moves the only forces acting on the mass are the force from the spring Fs, the force Fg from gravity, and force from Fair air resistance.  The force on the mass from air resistance is complicated, but can be approximated as:





Fair = v






[B.4]

where  is the damping parameter.  Notice the negative sign in equation B.4.  This means that the force from air resistance is in the direction opposite to the velocity v of the mass. The total force is thus:




Ftotal = Fg + Fs + Fair = mg – kx – v




[B.5]


According to Newton's second law, the total force on the mass m must equal the mass m times the acceleration a.  We can write:
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[B.6]

Substituting Equation B.5 into B.6, we find:
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[B.7]

We can now use the fact that v=dx/dt, and rearrange to get:
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[B.8]

This is a second order linear differential equation.  Solving this equation means finding the position x as a function of time t.  The general solution to this equation is of the form:
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[B.9]

This is just the equation of a damped sine wave.  The mass will tend to oscillate around the position xo. Notice that the amplitude of the oscillation (the term in front of the sin) decreases exponentially with time, so that if we wait long enough, the system will eventually just be sitting at x0  .  


The parameters in equation B.9 have the following meanings:


A 

is the initial amplitude of the oscillation


 

is the damping time constant.  It takes a time for the oscillation to 


decay by a factor of 1/e ≈ 1/3.
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 is the "angular frequency of the resonance" and is related to the 


resonance frequency f by =2πf, and to the period by T=1/f.
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 is the resonance frequency when there is no damping.  Notice that if the mass increases or the spring gets weaker, the resonance frequency decreases.  Also notice that with this definition of o, that the resonant frequency  doesn't depend on the amplitude of the motion, a fact you will check, but  does depend on the damping.




is the phase constant of the oscillation


x0

is the rest position of the oscillator.  
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