
Chapter 2

Theory and Formalism

Elastic (quasi-elastic) scattering from a proton (nucleon) can be described to

first order as a single photon (γ) exchange for the electromagnetic interaction and

single vector boson (Z) exchange for the neutral weak interaction, as shown in the

Feynman diagrams in Fig. 2.1.

Figure 2.1: Total leading order amplitude for electron scattering from a nucleon is

the sum of the leading order electromagnetic and neutral current amplitudes.

The incident electron, e, described by the four-vector k = (E,"k) scatters from

a target nucleon, p = (MN , 0). After the scattering event, the electron is described

as k′ = (E ′, "k′) and the nucleon as p′ = (EN , "p′). The four vector representing

the energy and momentum lost by the electron is Q = (ω, "q) where ω = E − E ′

and "q = "k − "k′. The electron is treated in the extreme relativistic limit, so that

m2
e = 0. Q2 is the invariant four-momentum transfer of the scattering and is defined

as Q2 = −q2 = −(ω2 − "q 2). For elastic electron scattering, Q2 = 4EE ′ sin2( θe
2 )
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where θe is the electron scattering angle in the laboratory frame of reference.

Each Feynman diagram has an associated invariant amplitude,MEM orMNC .

The amplitudes are summed to form the total first order invariant amplitude for the

interaction, M. The dominant amplitude is the electromagnetic interaction while

the neutral weak interaction generates a small amplitude that is detectable via

quantum interference. Because the weak interaction violates parity, the interference

effects imply the existence of small pseudoscalar observables in electron scattering

[BM01].

2.1 Nucleon Form Factors

The amplitude for the electromagnetic current (EC), following the notation of

[Mus94], can be written as1

MEM =
4πα

q2
Qll

µJEM
µ , (2.1)

and the amplitude for the weak neutral current (NC) can be expressed as

MNC = − GF

2
√

2
(gl

V lµ + gl
Alµ5)(JNC

µ + JNC
µ5 ), (2.2)

where Ql, gl
V , and gl

A are the lepton electromagnetic, vector, and axial-vector charges

respectively (Table 2.1). MNC shows no q2 dependence because when q2 << MNC ,

the weak interaction is usually treated as a contact interaction with a strength de-

termined by the Fermi constant [BPS04], GF ≈ 1.166367(5)×10−5 GeV−2 [Ams08].

1One point of departure from the formalism of [Mus94] where Q ≡ k − k′. In this work

Q2 ≡ −q2 > 0.
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The lepton vector and axial-vector currents, lµ and lµ5 respectively, can be expressed

as

lµ = ulγ
µul, (2.3)

lµ5 = ulγ
µγ5ul, (2.4)

with µl representing the four-component lepton spinor, γµ(µ = 0, 1, 2, 3) defining the

Dirac matrices, with γ5 = iγ0γ1γ2γ3. The fine structure constant is α = e2

4π where

e is the coupling strength of the electromagnetic interaction.2 The Fermi constant

[BM01] can be expressed as

GF =
e2

4
√

2M2
W sin2 θW

, (2.5)

where MW is the mass of the W boson and θW is the weak mixing angle. The weak

mixing angle can be related to the neutral and charged boson masses by the relation

sin2 θW ≡ 1− M2
W

M2
Z

. (2.6)

Fermion Ql gl
V gl

A

νe, νµ, ντ 0 1 −1
e−, µ−, τ− −1 −1 + 4 sin2 θW 1

u, c, t 2
3 1− 8

3 sin2 θW −1
d, s, b −1

3 −1 + 4
3 sin2 θW 1

Table 2.1: Electroweak charges of elementary fermions [Mus94]

Because the nucleon has internal structure, the hadronic currents include a set

of form factors defined to encompass this complicated structure. Assuming gauge

2Unless otherwise noted, the equations in this work have been derived in a set of units where

!c = 1.
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and Lorentz invariance, the hadronic vector currents of both the electromagnetic

and weak interactions (one boson exchange) can be expressed as [HM84]

J j
µ = UN

[
F j

1 (q2)γµ + F j
2 (q2)

iσµνqν

2M

]
UN , (2.7)

where UN is a nucleon spinor, j denotes the type of interaction (γ/EM or Z/NC),

σµν = i
2 [γ

µ, γν ], and N is the nucleon (p or n). The form factors F j
1 and F j

2 are the

Dirac and Pauli form factors, respectively. They are normalized such that for the

electromagnetic interaction, when Q2 = 0,

F γ
1 (0) = QN , (2.8)

F γ
2 (0) = κN , (2.9)

where QN is the electric charge of the nucleon (in units of e), and κN is the anomalous

magnetic moment of the nucleon (in units of the Bohr magneton).

There is an additional hadronic current to the neutral weak interaction due to

the axial vector component. When this is included with the neutral weak vector cur-

rent, the total hadronic current for the neutral weak interaction can be represented

as

JNC
µ = UN

[
FZ

1 (q2)γµ + FZ
2 (q2)

iσµνqν

2M
+ GeN

A γµγ5

]
UN , (2.10)

where GeN
A is the nucleon’s neutral weak axial form factor.

In practice, it is frequently better to use a linear combination of F1,2, known

as the Sachs form factors expressed as [Sac62]

GjN
E = F jN

1 − τF jN
2 , (2.11)

GjN
M = F jN

1 + F jN
2 . (2.12)
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Where τ = Q2

4M2 and j is the interaction type, either γ for electromagnetic or Z for

neutral weak. At Q2 = 0, GγN
E and GγN

M , are equivalent to the electric charge and

magnetic moment of the nucleon, respectively. Additionally, in the Breit frame, or

the center of mass frame defined by "p′ = −"p, the Sachs form factors are the Fourier

transforms of the nucleon charge and magnetic moment distributions [Sac62].

2.1.1 Flavor Decomposition

The hadronic currents, JEM
µ , JNC

µ , and JNC
µ5 , can also be expressed as

J i
µ ≡< H|Ĵ i

µ|H >, (2.13)

where |H > is any hadronic state, which in this case is either a proton or a neutron.

Assuming a point-like interaction between the gauge bosons (γ, Z) and the quarks

internal to the nucleon, the quark current operators can be written as [Mus94]:

ĴEM
µ ≡

∑

q

Qqūqγµuq, (2.14)

ĴNC
µ ≡

∑

q

gq
V ūqγµuq, (2.15)

ĴNC
µ5 ≡

∑

q

gq
Aūqγµγ5uq, (2.16)

where the summation is over all quark flavors, which implicitly includes both quarks

and their anti-quarks. The values of Qq, gq
V , and gq

A given in Table 2.1. Expressing

the quark current operators in this manner allows us to express the hadronic currents

as

JEM
µ ≡ UN

∑

q

Qq

[
F q

1 γµ + F q
2

iσµνqν

2M

]
UN , (2.17)

JNC
µ ≡ UN

∑

q

[
gq

v

(
F q

1 γµ + F q
2

iσµνqν

2M

)
+ gq

AGq
Aγµγ5

]
UN , (2.18)
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where F q
1 , F q

2 , and Gq
A, are the Dirac, Pauli, and axial form factors, respectively,

with quark flavor q. The quark form factors, F q
1 and F q

2 , are interaction independent

and are the same in eqns. 2.17 and 2.18. Comparing eqns. 2.7 and 2.10 with eqns.

2.17 and 2.18 it is evident that the nucleon form factors F γN
1,2 , FZN

1,2 , and GeN
A can

be expressed in terms of the quark flavor form factors as

F γN
1,2 =

∑

q

QqF
q
1,2, (2.19)

FZN
1,2 =

∑

q

gq
vF

q
1,2, (2.20)

GeN
A =

∑

q

gq
AGq

A, (2.21)

where Qq, gq
v, and gq

A are given in Table 2.1. This results in a set of five nucleon

form factors in terms of 12 unknown quark form factors for each nucleon. The

electromagnetic and neutral weak Sachs form factors can also easily be expressed as

quark flavor form factors

GγN
E,M =

∑

q

QqG
q
E,M , (2.22)

GZN
E,M =

∑

q

gq
vG

q
E,M . (2.23)

2.1.1.1 Flavor Vector Form Factors

Because the masses of the three heaviest quarks (c, b, and t) are greater than

the mass of the proton, there is a strong suppression of their contributions to the

properties of nucleons. This allows us to write the Sachs form factors in term of the
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three lightest quark flavors

GγN
E,M =

2

3
GuN

E,M −
1

3

(
GdN

E,M + GsN
E,M

)
(2.24)

GZN
E,M =

(
1− 8

3
sin2 θW

)
GuN

E,M −
(

1− 4

3
sin2 θW

) (
GdN

E,M + GsN
E,M

)
. (2.25)

The number of unknowns can be further reduced by assuming charge symmetry

which capitalizes on the fact that the (u, d) quarks in the proton are in the same

wave function as the (d, u) quarks in the neutron [Mil98]. In addition, it is generally

assumed that the strange quark distributions in the proton and the neutron are the

same. These assumptions allow the following result.

Gu,p
E,M = Gd,n

E,M ≡ Gu
E,M , Gd,p

E,M = Gu,n
E,M ≡ Gd

E,M , Gs,p
E,M = Gs,n

E,M = Gs
E,M ,

(2.26)

which reduces the number of unknowns and simplifies the notation. Charge symme-

try breaking occurs due to the differing masses and charges of the u and d quarks,

but this effect is generally less than 1% of the electromagnetic form factors [Mil98].

Explicitly writing the proton and neutron Sachs vector form factors using

Eqns. (2.20 and 2.21) and charge symmetry yields

Gγp
E,M =

2

3
Gu

E,M −
1

3

(
Gd

E,M + Gs
E,M

)
, (2.27)

Gγn
E,M =

2

3
Gd

E,M −
1

3

(
Gu

E,M + Gs
E,M

)
, (2.28)

GZp
E,M =

(
1− 8

3
sin2 θW

)
Gu

E,M −
(

1− 4

3
sin2 θW

) (
Gd

E,M + Gs
E,M

)
, (2.29)

GZn
E,M =

(
1− 8

3
sin2 θW

)
Gd

E,M −
(

1− 4

3
sin2 θW

) (
Gu

E,M + Gs
E,M

)
. (2.30)

Rearranging Eqns. 2.27, 2.28, and 2.29, it is possible to express the proton’s neutral

7

beise
Highlight

beise
Sticky Note
This wording seems a little awkward. Maybe what you mean is that the wave functions of the u and d quarks in the proton are the same as the d and u in the neutron?


beise
Sticky Note
There's a more recent reference that would also be useful to include here: Lewis et al, I think it might be references in the PPNP paper (Beise, Spayde, Pitt).




weak form factor as

GZp
E,M =

(
1− 4 sin2 θW

)
Gγp

E,M −Gγn
E,M −Gs

E,M . (2.31)

This important results shows that a measurement of the neutral weak form factors,

when combined with the well-known values for the electromagnetic form factors,

provides a determination of the vector strange form factors.

2.1.1.2 Flavor Axial Form Factors

The neutral weak axial form factors can also be expressed as a sum of the

individual quark flavor form factors, weighted by the weak axial charge of that

flavor

GZN
A = gu

AGuN
A + gd

AGdN
A + gs

AGsN
A . (2.32)

Assuming charge symmetry as well as the same strange quark distributions in pro-

tons and neutrons results in:

Gup
A = Gdn

A ≡ Gu
A, Gdp

A = Gun
A ≡ Gd

A, GsN
A ≡ Gs

A, (2.33)

and using the values in Table 2.1, the neutral weak axial form factors can be ex-

pressed in the following simplified manner

GZp
A = −(Gu

A −Gd
A) + Gs

A (2.34)

GZn
A = (Gu

A −Gd
A) + Gs

A. (2.35)

In the limit of “no strangeness”, the axial form factor has an explicit isovector

structure:

GZ
A = −(Gu

A −Gd
A) = −τ3GA (2.36)

8

beise
Cross-Out



where τ3 = +1 (-1) for a proton (neutron). GA can be related to the coupling

constants gA and gV by GA(0) = −gV

gA
= 1.2670 ± 0.0035 [Ams08] as determined

from β-decay experiments [Mus94].

In the lowest order limit of single Z-boson exchange, the isovector and SU(3)

singlet contributions survive:

GZ
A = −τ3GA + Gs

A (2.37)

where Gs
A is the strange quark contribution to nucleon spin. Gs

A comes from the

axial vector strange matrix element < p|s̄γµγ5s|p > measured in deep inelastic

scattering experiments and discussed in section 2.3. Higher order corrections to Gs
A

are expected to be significant and are also addressed in section 2.3.

2.1.1.3 Flavor Singlet Form Factors

The flavor decomposition may also be made in terms of the SU(3) flavor basis

where the electromagnetic form factors are written as a sum of isovector and octet

terms,

Gγp
E,M = G3,p

E,M +
1√
3
G8,p

E,M . (2.38)

The isovector form factor G3,p
E,M and the octet form factor, G8,p

E,M can be written in

terms of individual quark contributions,

G3,p
E,M =

1

2

(
Gu

E,M −Gd
E,M

)
(2.39)

G8,p
E,M =

1

2
√

3

(
Gu

E,M + Gd
E,M − 2Gs

E,M

)
. (2.40)
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In this basis, the neutral weak form factors are

GZp
E,M =

(
1

2
− sin2 θw

)
G3,p

E,M +

(
1

2
√

3
− 1√

3
sin2 θw

)
G8,p

E,M −
1

4
G0

E,M ,(2.41)

GZp
E,M =

(
1

2
− sin2 θw

)
Gγ,p

E,M −
1

4
G0

E,M , (2.42)

where

G0p
E,M =

1

3

(
Gu

E,M + Gd
E,M + Gs

E,M

)
(2.43)

is the flavor singlet form factor. A measurement of GZp
E,M , as taken during the G0

experiment, when combined with the known values for the proton’s electromagnetic

form factors, determines the flavor singlet form factor, G0p
E,M . This is the origin of

the name of the G0 experiment.

2.2 Parity Violation in Electron Scattering

It was Kaplan and Manohar in 1988 [KM88] who first showed that information

about strange quark effects in the nucleon could be extracted from elastic neutral

current processes. They were followed by Beck [Bec89] and McKeown [McK89]

who showed how GZ
E,M could be measured using parity-violating electron scattering,

which led to a series of experimental programs. These experiments include the G0

Backward Angle measurement at Jefferson Lab’s Continuous Electron Beam Facility

(CEBAF), which is the topic of this thesis, and several others that are described

and discussed in Chap. 3.
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2.2.1 Experimental Observables: Neutral Weak Vector Form Factors

As previously mentioned, the total invariant amplitude for e-N elastic or quasi-

elastic scattering is a coherent sum of the electromagnetic and neutral current am-

plitudes

M = MEM +MNC , (2.44)

where leading order values of MEM and MNC are given in Eqns. 2.1 and 2.2

respectively. The scattering probability, dσ, is proportional to the total invariant

amplitude squared

dσ =∝ |M|2 =∝ |MEM |2 + 2MEM ∗MNC + |MNC |2, (2.45)

where MEM ∗
represents the complex conjugate of MEM . The neutral weak ampli-

tude is strongly suppressed relative to the electromagnetic amplitude in an absolute

cross section measurement. Therefore, in order to measure the neutral weak vector

form factors, it is necessary to take advantage of the parity-violating nature of the

weak interaction. Because the weak interaction violates parity while the electro-

magnetic interaction does not, it is the interference term, 2MEM ∗MNC , that is the

cause of the parity violation seen in e-N elastic and quasi-elastic scattering.

Operators formed from a vector and an axial vector operator are parity-

violating while operators formed from squares of either conserve parity. The parity-

violating component of the neutral current amplitude arises from the cross terms

of the axial and vector currents. The amplitude can be written as a sum of parity-

conserving MNC
PC and parity-violating MNC

PV amplitudes:
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MPC = − GF

2
√

2
(gl

V lµJNC
µ + gl

Alµ5JNC
µ5 ), (2.46)

MPV = − GF

2
√

2
(gl

V lµ5JNC
µ + gl

AlµJNC
µ5 ). (2.47)

Parity violation can be probed using longitudinally polarized electrons where

the two states of electron polarization (parallel or anti-parallel to the beam) corre-

spond to the two parity states. The parity-violating asymmetry for the scattering

of the polarized electrons from a target of unpolarized protons is defined as the

difference in the cross section for each helicity state, divided by the sum of the cross

sections:

A ≡ σ+ − σ−
σ+ + σ− . (2.48)

Eliminating the parity conserving terms, and any terms with G2
F in the nu-

merator or GF in the denominator, provides the following expression for the parity-

violating asymmetry:

A ≈ 2
MEM ∗MPV

|MEM |2 . (2.49)

Substituting in Eqns. 2.1, 2.7, 2.10, 2.11, 2.12, and 2.47 and rearranging the

terms as in Refs. [RS74] and [BPS04] yields:

A = − GF Q2

4πα
√

2

AE + AM + AA

[ε(Gγ
M)2 + τ(Gγ

M)2]
, (2.50)

with the electric, magnetic, and axial components of the asymmetry expressed as;

AE = εGZ
E(Q2)Gγ

E(Q2), (2.51)

AM = τGZ
M(Q2)Gγ

M(Q2), (2.52)

AA = −(1− 4 sin2 θW )
√

τ(1 + τ)(1− ε2)Ge
A(Q2)Gγ

M(Q2), (2.53)
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and

τ =
Q2

4M2
N

and ε =
1

1 + 2(1 + τ) tan2 θ
2

. (2.54)

Writing the asymmetry expression in the above manner clearly shows the γ−Z

interference and the sensitivity of the electric, magnetic, and axial form factors to the

kinematics of the experiment. In general, forward angle experiments are sensitive

to a combination of AE and AM and backward angle experiments to a combination

of AM and AA. Additionally, quasielastic scattering from an isospin 0 target, such

as a deuteron can be used to enhance AA [BPS04].

The notation for the axial form factor has been modified here from GZ
A to Ge

A

in order to distinguish the from factor as seen by electron scattering from that seen

by neutrino scattering where the higher order diagrams involving electromagnetic

interactions are absent. This will be discussed in more detail in section 2.3.

2.2.2 Electroweak Radiative Corrections to the Neutral Current

The neutral weak vector and axial vector form factors derived at leading order

in Section 2.1.1.1 require corrections due to higher order electroweak processes.

These corrections modify the coupling constants at the interaction vertex and in

effect, modify the weak vector and axial charges. The corrections fall in one of

three categories: one quark, many-quark, and heavy quark renormalization. One

quark radiative corrections that do not require knowledge of quark interactions

can be calculated using Standard Model electroweak theory with small associated

uncertainties. The electroweak calculations require a renormalization scheme to be
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selected, and in this work, the “MS-bar” (MS) or modified minimal subtraction

scheme is used. The weak mixing angle in this scheme is no longer defined as it

was in Eqn. 2.6, but now carries a dependence on a renormalization mass scale µ

[Mus94], which in this case is the mass of the Z boson, MZ = 91.1876±0.0021 GeV

[Ams08].

For the vector weak form factors at low momentum transfers, the one quark

corrections have a weak dependence on Q2 and have the same (1− 4 sin2 θW ) multi-

plier as the tree-level amplitudes and therefore, despite being the dominate higher-

order vector correction, are typically very small [BPS04]. One-quark axial cor-

rections are also calculable with small errors, but unlike the vector correction, it

is substantial compared to the tree-level amplitudes. The biggest effect of elec-

troweak radiative corrections however, is the many-quark correction to the axial

term. Corrections involving many-quarks where strong interactions are included, can

Figure 2.2: Representative one-quark Feynman diagrams contributing to electroweak

radiative corrections.

not be easily calculated because Perturbative Quantum Chromodynamics (PQCD)

is not effective in the energy range of the G0 measurements, ≈ 1 GeV. These cor-
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rections have a large associated uncertainty because of our inability to include all

virtual hadronic states in the calculation. It should be noted that the many-quark

correction only effects the axial contribution.

The third correction is heavy quark renormalization. When the neutral weak

form factors were decomposed into quark form factors (Eqns. 2.27, 2.28, 2.29, and

2.30) only the three lightest quark flavors were included. Heavy-quark renormaliza-

tion of the light-quark current operators results in corrections to the neutral current

couplings. These corrections were calculated by Kaplan and Manohar [KM88] and

were found to be small, with the vector term on the order of 10−4 and 10−2 for the

axial term. These corrections are neglected in this work due to their small size.

Electroweak radiative effects can be parametrized in terms of the parameters

ρ and κ as proposed in the pioneering work of Marciano and Sirlin, [MS84]. In this

approach, the proton’s weak charge becomes

Qw = 1− 4 sin2 θW → ρ(1− 4κ sin2
θW

). (2.55)

Using this parameterization, the proton asymmetry can be written as a sum of

vector, strange vector, and axial vector contributions [TBM09],

Ap = −
(

GF Q2

4
√

2πα

)
(AV + As + AA), (2.56)

where

AV = ρ

[
(1− 4κ sin2

θW
)− εGγ,p

E Gγ,n
E + τGγ,p

M Gγ,n
M

σ

]
, (2.57)

As = −ρ
εGγ,p

E Gs
E + τGγ,p

M Gs
M

σ
, (2.58)

AA = −(1− 4 sin2
θW

)
√

τ(1 + τ)(1− ε2)
Ge

AGγ,p
M

σ
, (2.59)
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with σ = ε(Gγ,p
E )2 + τ(Gγ,p

M )2 representing the unpolarized proton cross section. The

form factor Ge
A implicitly contains higher order radiative corrections for the proton

axial current and is discussed in Section 2.3.

An alternative parameterization is in terms of isoscalar and isovector weak

radiative corrections for the vector form factors. The proton and neutron radiative

corrections are given to first order in ρ− 1 and κ− 1 by

Rp
V = ρ− 1− (κ− 1)

4 sin2 θW

1− 4 sin2 θW
, (2.60)

Rn
V = ρ− 1. (2.61)

The first order neutral vector form factor was given in Eqn. 2.31. The full expression

for GZ
E,M , including the electroweak radiative corrections is [BPS04]

GZp
E,M =

(
1− 4 sin2 θW

)
(1 + Rp

V ) Gγp
E,M − (1 + Rn

V ) Gγn
E,M −Gs

E,M . (2.62)

The full asymmetry for a nucleon, N , in terms of the vector R parameters can

be written as [Mus94][LMRM07]:

AN = − GF Q2

4πα
√

2

1

[ε(GN
E )2 + τ(GN

M)2]

× { (ε(GN
E )2 + τ(GN

M)2)(1− 4 sin2 θW )(1 + Rp
V )

− (εGp
EGn

E + τGp
MGn

M)(1 + Rn
V )

− (εGN
E Gs

E + τGN
MGs

M)(1 + R(0)
V )

− (1− 4 sin2 θW )ε′GN
MGe

A}. (2.63)
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2.3 Axial Form Factor and the Anapole Moment

As previously mentioned, in neutrino-nucleon scattering, GZ
A is a very good

approximation of the axial form factor. In electron scattering however, electroweak

radiative corrections to the axial current are a large effect. For clarity, the notation

Ge
A ≡ GZ

A is used to denote the radiatively corrected axial form factor seen in electron

scattering.

Including higher order electroweak corrections in the expression for the axial

form factor, modifies Eqn. 2.37 in the following manner [BPS04];

Ge
A = −τ3

(
1 + RT=1

A

)
GA +

√
3RT=0

A G8
A + Gs

A(1 + R(0)
A ). (2.64)

There is now a term proportional to an SU(3) isoscalar octet form factor G8
A,

which at tree level is zero. The isovector term GA may be written as

GA =

(
gA

gV

)
GD (2.65)

where

GD(Q2) =
1

(1 + Q2/M2
A)2

(2.66)

uses a dipole form to parametrize the Q2 dependence of GA. The ratio of the

axial and vector coupling constants, gA

gV
= 1.2695(29) [Ams08], is well known at

zero momentum transfer from β-decay and other charged-curent weak interaction

processes, such as νµ + n → p + µ− from quasi-elastic neutrino scattering from

deuterium. The axial mass, MA = 1.014±0.014 (GeV/c)2, was determined by fitting

neutrino-deuterium data and comparing that result with calculations from pion

electroproduction experiments corrected for hadronic effects [BABB08]. The pion
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and the neutrino data are in close agreement, so although MA can not at this time be

determined from first principles, it can be described accurately phenomenologically

for Q2 < 1 (GeV/c)2.

The dipole expression of GA can then be used to determine an axial radius in

a low momentum expansion of GA with Q2 [Bei05],

< r2
A >=

6

gA

dGA

dQ2
|Q2=0 =

12

MA
. (2.67)

The SU(3) octet form factor G8
A at Q2 = 0 can be estimated from the ratio of

axial vector to vector couplings in hyperon β decay which, assuming SU(3) flavor

symmetry, can be related to the hyperon F and D coefficients [Bei05] [Got00],

G8
A(0) =

(3F −D)

2
√

3
= 0.585± 0.025. (2.68)

The isoscalar strange axial form factor Gs
A reduces at Q2 = 0 to Gs

A = ∆s

where ∆s is the fraction of nucleon spin carried by the strange quarks (s + s̄). The

Q2 behavior of both G8
A and Gs

A has not been measured. Generally, it’s assumed to

have the same dipole form as the isovector form factor GA, resulting in the following

expression for the axial form factor,

Ge
A = GD

A

[
GA

GV

τ3(1 + RT=1
A ) +

3F −D

2
RT=0

A + ∆s(1 + R(0)
A )

]
. (2.69)

2.3.0.1 The Anapole Contribution

The anapole moment is a parity-violating electromagnetic interaction where

along with a photon exchange between the electron and the nucleon, a weak parity-

violating hadronic interaction also occurs [ZPHRM00]. The electroweak radiative
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correction associated with the anapole moment was referred to earlier as the “many

quark” correction to the axial form factor. Zhu calculated the contributions of the

anapole moment to RT=1
A and RT=0

A using heavy baryon chiral perturbation theory

to order p3 [ZPHRM00]:

RT=1
A |anapole = −8

√
2πα

GµΛ2
χ

1

1− 4 sin2 θW

as

gA
, (2.70)

RT=0
A |anapole = −8

√
2πα

GµΛ2
χ

1

1− 4 sin2 θW

av

gA
, (2.71)

where Λχ = 4πFπ is the chiral symmetry breaking scale and the anapole moment is

given by the quantity as + τ3av . The relative importance of the anapole interaction

is clearly seen in the 1
1−4 sin2 θW

≈ 10 enhancement to the correction.

Liu, Mckeown, and Ramsey-Musolf [LMRM07] calculated the isovector and

isoscalar electroweak axial radiative corrections (Table 2.2) following [ZPHRM00]

and[Mus94]. Their result shows that the theoretical uncertainty in the total RA

is large compared to the one-quark corrections, demonstrating the importance of

measuring Ge
A during the G0 backangle experiment and constraining RT=1

A .

RT=1
A RT=0

A

One quark 0.172 -0.253
Many quark -0.086(0.34) 0.014(0.19)

Total -0.258(0.34) -0.239(0.20)

Table 2.2: The “one quark”, “many quark”, and total corrections to the axial charges
in the MS scheme.
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2.4 The Deuteron

In order to determine Ge
A, GS

E, and GS
M experimentally, the three unknowns

requiring a measurement are GZ
E, GZ

M , and GZ
A (see Eqn. 2.63). Two asymmetry

measurements can be made using a proton target but with two different kinematic

settings, i.e. forward angle or backward angle scattering. Another equation with

the same unknowns and same Q2 is also required. Using a target of neutrons would

be ideal. Although a neutron target isn’t feasible, a deuterium target is.

In the static approximation, the nucleons in the deuteron are treated as free,

non-interacting particles. The proton and neutron asymmetries add incoherently,

resulting in the following expression for the parity violating asymmetry from quasi-

elastic electron scattering from deuterium, Ad [HPD92]:

Ad =
σpAp + σnAn

σp + σn
, (2.72)

where σn(p) is the cross section for elastic electron-neutron (proton) scattering.

Because of the τ3 term in front of the RT=1
A in Eqn. 2.69, and the relative size

of Gp
M ≈ 2.79 and Gn

M ≈ −1.91, the RT=1
A term is enhanced, and the RT=0

A term is

suppressed in the deuterium asymmetry measurement.

2.4.0.2 Two Boson Exchange Correction

Because the expected size of the extracted strange vector form factors is small

and because the proton’s weak charge is also small, the relative importance of two

boson exchange (TBE) effects in a parity-violating electron scattering measurement

are enhanced [TBM09]. Although a suppressed, higher order interaction, two-photon
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exchange (TPE) was found to have a significant impact in resolving the discrepancy

between the electric to magnetic proton form factor ratio measurements using the

Rosenbluth separation technique [BMT05].

Tjon, Blunden and Melnitchouk have recently calculated the electroweak ra-

diative corrections including corrections arising from the interference of first order

and TBE diagrams, both electromagnetic (γ, γ) and electroweak(γ, Z). The calcu-

lation was made by changing the amplitudes in Eqn. 2.45 in the following manner,

MEM → MEM +Mγγ, (2.73)

MNC → MNC +MγZ +MZγ, (2.74)

where the two-photon and γZ exchange amplitudes are given explicitly in [TBM09].

The relative corrections from the Z(γγ), γ(γZ), and γ(γγ) interference terms are

identified as [TBM09]

δZ(γγ) =
2R(MZ∗Mγγ)

2R(MZ∗Mγ)
, (2.75)

δγ(γZ) =
2R(Mγ∗MγZ +Mγ∗MZγ)

2R(Mγ∗MZ)
, (2.76)

δγ(γγ) =
2R(Mγ∗Mγγ)

|(Mγ|2 . (2.77)

In order to apply their TBE correction, it is necessary to first remove the

Q2 = 0 hadronic, or low-mass portion of the TBE in the terms ρ and κ which are

then used to calculate the R factor corrections [TBM09]. The low-mass portion of

the corrections are referred to as ∆ρMS and ∆κMS; these values are shown in Table

2.3 and details of the calculation are provided in Sec. 2.5.
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The correction to Eqn. 2.59 is then

A = (1 + δ)A0 ≡
(

1 + δZ(γγ) + δγ(Zγ)

1 + δγ(γγ)

)
A0 (2.78)

where A0 is given in Eqn. 2.63.

2.5 Electroweak Parameters

This section presents a summary of the parameters and calculations used to

determine the electroweak correction parameters, the R factors, which were applied

to the G0 backward angle measurement to extract the axial and vector strange form

factors. All values are calculated in the MS scheme.

Quantity Value Reference

GF 1.16639× 10−5 [Ams08]
MA 1.014 ±0.014 (GeV/c)2 [BABB08]
ŝ2

Z 0.23120(15) [Ams08]
gA 1.2695± 0.0029 [Ams08]

3F −D 0.585± 0.025 [Ams08]
gA 1.2695± 0.0029 [Got00]
ρ1 0.9875 [Ams08]
ρ2 1.0004 [Ams08]
κ1 1.0025 [Ams08]
κ2 1.0298 [Ams08]
λ1u −1.80× 10−5 [Ams08]
λ1d 3.6× 10−5 [Ams08]
λ2u −0.0121 [Ams08]
λ2d 0.0026 [Ams08]

∆ρMS -0.00071 [TBM09]
∆κMS -0.001027 [TBM09]

Table 2.3: Parameters used to calculate the electroweak radiative corrections.

To arrive at the R factors, the values in Table 2.3 are used to first calculate

a set of constants, C1u, C1d, C2u, and C2d (Eqn. 2.79) found in the Particle Data
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Book (PDG) that describe the coupling of the electron current to the quark current

[Ams08]. These relations are:

C1u = ρ∗1(−
1

2
+

4

3
κ∗1ŝ

2
Z) + λ1u,

C1d = ρ∗1(
1

2
− 2

3
κ∗1ŝ

2
Z) + λ1d,

C2u = ρ∗2(−
1

2
+ 2κ∗2ŝ

2
Z) + λ2u,

C2d = ρ2∗(
1

2
− 2κ∗2ŝ

2
Z) + λ2d, (2.79)

where ρ∗i = ρi−∆ρMS and κ∗2 = κi−∆κMS. The the axial and vector quark charges

can be expressed in terms of the C parameters, Eqn. 2.80. The quark charges are

related to the R factors through the six weak nucleon charges, Eqn. 2.81.

cu,c,t
V = −2C1u, cd,s,b

V = −2C1d,

cu,c,t
A =

2C2u

1− 4 sin2 θw
, cd,s,b

A =
2C2d

1− 4 sin2 θw
, (2.80)

And finally, the six weak nucleon charges provide the link between the quark charges

and the R factors,

Qp
W = 2cu

V + cd
V = (1 + Rp

V )(1− 4 sin2 θw),

Qn
W = 2cd

V + cu
V = −(1 + Rn

V ),

Q(0)
W = cu

V + cd
V + cs

V = −(1 + R0
V ),

QT=1
A =

1

2
(cu

A − cd
A) = −(1 + RT=1

A ),

QT=0
A =

√
3(cu

A + cd
A) =

√
3(1 + RT=0

A ),

Q(0)
A = cu

A + cd
A + cs

A = (1 + R0
A). (2.81)
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Table 2.4 shows the values for the R factors (“one quark” only) for hydrogen.

R Factor Value

Rp
V -0.043

Rn
V -0.0124

R(0)
V -0.0124

RT=1
A -0.171

RT=0
A -0.253

R(0)
A -0.550

Table 2.4: Radiative correction factors (“one quark”).

2.6 Theoretical Predictions of GS
E and GS

M

The G0 measurement of the vector strange form factors is independent of

any theoretical models predicting the presence or behavior of strange quarks in the

nucleons. One can argue that this makes the theoretical predictions even more

interesting. The difficulty in calculating static properties of the nucleon is that

the strong coupling constant (αs) is large at low energies and therefore it’s not

possible to use a perturbative expansion in αs to describe the interaction. Because

of the difficulty in a straight-forward calculation of the strange quark contribution

to nucleon properties, there have been a wide variety of approaches to making an

effective calculation. A survey of the most popular methods is presented below.

Most theories focus on predicting the contribution to the strange magnetic

moment, µs, and the strangeness radius, rs, both defined at Q2 = 0. The strangeness

radius gives the mean square radius of the strange “charge” distribution. A positive

value implies that the s quark is further away from the center of the nucleon than
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s̄ and visa versa [BH01]. The expressions for these quantities are:

µs = Gs
M(Q2 = 0) (2.82)

< rs > ≡ −6
dGs

E

dQ2
(Q2 = 0) (2.83)

2.6.1 Chiral Perturbation Theory

Chiral perturbation theory (CHPT) is a powerful tool that capitalizes on the

QCD Lagrangian having an approximate SU(3)L × SU(3)R symmetry in the limit

where the light quark masses vanish. Because the physical masses of the three

lightest quarks are much less than the hadronic scale (≈1 GeV), the massless ap-

proximation is reasonable. Chiral symmetry is used to relate one set of observables

to another, or to draw on one set of measured quantities to predict another [RMI97].

This strategy breaks down in the flavor-singlet channel because the coefficients

of the relevant flavor-singlet operators in the chiral Lagrangian, which contain in-

formation on short-distance hadronic effects, cannot be determined from existing

measurements using chiral symmetry [RMI97]. Leading order, long-distance con-

tributions are calculable however for µs and rs, but it is not clear that these con-

tributions dominate the short-distance effects. Therefore in order to determine the

strangeness contribution of the nucleon, model-dependent assumptions are necessary

[RMI97].

There are a number of hadronic models, but two that will be discussed here

are variations of “pole” and the “loop” models. The primary shared feature of

these models is the use of a strange intermediate hadronic state to approximate the
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nucleon’s strangeness content.

Figure 2.3: The primary feynman diagram for a loop-model calculaton.

2.6.1.1 Loop Models

In the Kaon Loop model, also referred to as the kaon cloud model, a nucleon

combines with a qq̄ pair to form a meson and an intermediate baryon state (see

Fig. 2.3). The qq̄ pair annihilates when the meson and baryon recombine leaving

the original nucleon. One of the appeals of this model is the physical interpretation

of the nucleon charge radius, where the model characterizes a spatial asymmetry

with a non-zero charge distribution for s and s̄. The intermediate strange meson-

baryon state (typically modeled as a kaon and a hyperon) allows the s and s̄ to

spatially separate because of the mass difference between the two intermediate state

particles [RMI97]. Another motivation for this model came from the success of

a pion loop calculation of the nucleon’s electromagnetic form factors carried out

by Bethe and DeHoffman [BH55]. When their results were reported, there was

surprising agreement with experimental values for both the nucleon’s charge radii
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and magnetic moments, despite the large πN coupling which enters the perturbative

calculation. This led to the belief that the pion cloud dominates the nucleon’s

isovector electromagnetic moments and that it is sufficiently described using a one-

loop calculation. It was thought that if this was also the case for the strangeness

sector, then the kaon cloud would provide the dominant contribution to the strange

charge and magnetic moment [RMI97].

One approach for using kaon loop calculations was made by Koepf, Henley,

and Pollock [KHP92]. They used bag models, both the “cloudy” constituent quark

model and the cloudy bag model (CBM) to describe the hadrons. The size and

structure of the nucleon bag was contained in a form factor, v(k), with the size of

the bag serving as the only unknown parameter. The model bag size was extracted

using fits to the nucleon magnetic moments and charge radii. After fixing the size

parameter, kaon loop calculations were completed.

Kaon loops introduce divergences that are typically handled with a momen-

tum cut-off in the loop integral [DGH92]. Ramsey-Musolf and Burkardt performed

a loop calculation within the context of the SU(3) linear σ model where the lead-

ing strangeness moments are ultraviolet finite. The calculation was performed by

including hadronic form factors at the meson-nucleon vertices, using results of fits

to baryon-baryon scattering in the one meson exchange approximation [MB94].

Geiger and Isgur [GI97] provided a follow-on kaon loop calculation using a

non-relativistic quark model with yet another variation. Their calculation summed

over a complete set of strange intermediate states, rather than just a few low-lying

states, which provided a consistency with the OZI rule. The authors point out
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that their results are not predictive of µs because their calculation ignored pure

OZI-forbiddden effects.

2.6.1.2 Pole Models

Based on analyticity and causality, dispersion relations (DR) relate the real

parts of the form factors to integrals involving their imaginary parts. The imaginary

parts, or spectral functions, contain information on the contributions to the form

factor dynamics made by various states in the hadronic spectrum [HRM99].

For example, to obtain the dispersion relation for the Dirac form factor, Fi(t),

where t is real, the assumption is made than an analytic continuation Fi(z) exists

in the upper-half plane that approaches Fi(t) as z → t + ie and that Fi(z)
zn → 0 as

z →∞ for non-negative integers in the upper-half plane. Using Cauchy’s theorem,

a subtracted DR is shown for F1 and an unsubtracted one for the Pauli form factor,

F2:

F1(t) = F1(0) +
t

π

∫ ∞

9m2
π

ImF1(t′)

t′(t′ − t)
dt′, (2.84)

F2(t) =

∫ ∞

9m2
π

ImF2(t′)

t′(t′ − t)
dt′. (2.85)

The lower limit of integration is given by the threshold of the lightest intermediate

state contributing to the form factors, the 3π state [HRM99].

Poles models take a dispersion analysis approach, and are based on the work of

Höller et al., [H7̈6], where the basic premise is that the exchanged boson fluctuates

into an isoscalar meson, either an ω or a φ, and then the meson interacts with the
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nucleon (see Fig. 2.4). Both the ω and the φ are linear combinations of strange and

Figure 2.4: The primary feynman diagram for a pole-model calculaton.

non-strange base states:

|ω〉 = cos(η)|ωo〉 − sin(η)|φo〉, (2.86)

|ω〉 = sin(η)|ωo〉+ cos(η)|φo〉, (2.87)

where φo = |ss̄〉, ωo = 1√
2
(|uū〉 + |dd̄〉), and η = 0.053 ± 0.005 is the mixing angle

[Jaf89].

Vector meson dominance (VMD) is a special application of a dispersion relation

with the assumption that the nucleon matrix element can be written as a summation

over intermediate vector states. For example,

F a
1 (q2) = F a

1 +
∑

V

q2aa
V

m2
V − q2

, (2.88)

F a
2 (q2) =

∑

V

m2
V ba

V

m2
V − q2

, (2.89)

where mV is the mass of an intermediate meson V . Jaffe calculated the strangeness

radius and magnetic moment using a 3-pole fit to experimental data for the spectral

29



function of the isoscalar nucleon form factors. His first and second terms represented

the coupling of nucleons to ω(780) and φ(1020) mesons. The third term represented

contributions from other mass states.

2.6.1.3 Loops and Poles

Loop and pole predictions for the strangeness radius are opposite sign, and

the magnitude of the loop prediction for the strangeness radius is about 20 times

smaller for the Dirac radius than that of the pole prediction. This motivated Cohen,

Forkel, and Nielsen to attempt to establish a link between the pole and loop pictures,

by combining the VMD model in the ω and φ sector (Y T = 0, JPC = 1−−) with

Musolf and Burkardt’s loop calculation. They calculated the nucleon strange matrix

elements using kaon loops, and used Höller’s empirical fits for the isoscalar matrix

elements, which were then combined using the VMD assumption with only ω and φ

poles [CFN93].

2.6.2 Lattice QCD

Lattice QCD is a non-perturbative computational method based on a Feynman

path integral approach to quantum field theory. Computations are performed on a

lattice of space-time through intensive use of numerical integrations. Quarks and

gluons reside on lattice points and can only travel along lines between them. This

approximation approaches continuum QCD as the spacing between the lattice points

approaches zero.
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Figure 2.5: Three point function representations. The connected insertion (left)

compared to the disconnected insertion (right) [Doi09].

Unlike the models previously discussed, lattice QCD offers a first-principle cal-

culation. One of the major difficulties with using lattice calculations to calculate the

strange electromagnetic form factors, is that the calculation requires the evaluation

of the disconnected insertion (DI). The DI calculation (Fig. 2.5 (right)) is a much

more difficult calculation compared to the connected insertion (Fig. 2.5 (left)) cal-

culation, because the straightforward DI calculation requires all-to-all propagators,

and is prohibitively expensive, [Doi09]. Recently, Doi et al., published the first full

QCD lattice simulation of the direct insertion calculation with high statistics. Their

result, along with calculations from other analyses is shown in Table 2.5.

Type of Calculation µs Reference

Lattice QCD -0.017(25)(07) [Doi09]
Dispersion relation with Pole ansatz -0.31(9) [Jaf89]

Dispersion relation with Kaon Clouds -(0.15→0.51) [HRM99]
Quark Model 0.035 [GI97]

Chiral Quark-Soliton Model 0.08-0.13 [SKUG06]

Table 2.5: Summary of theoretical predictions for µss.
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