Department of Physics, University of Maryland College Park, MD 20742-4111

Physics 704

HOMEWORK ASSIGNMENT #3

Fall 2011

Study: P&B 3.6,6.3-6.7,7.1-7.2

Skim: P&B 6.2

Due date for problems on March 15 [deadline on March 17].

- 1. P&B problem 3.8
- 2. Consider the solid-on-solid (SOS) model of an interface. In each column of a 1D lattice i, the interface lies at a position n_i = 0, 1, 2, 3, ..., which is single-valued (so no overhangs or voids):

$$\mathcal{H} = \varepsilon \Sigma_{i} | n_{i} - n_{i+1} | - K \Sigma_{i} \delta_{n_{i},0}$$
 $n_{i} = 0, 1, 2, 3,...$

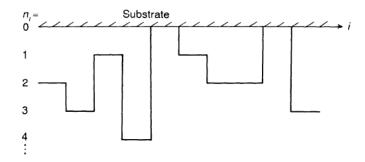


Fig. 5.2. The solid-on-solid model of an interface on a semi-infinite lattice. In each column of the lattice, i, the interface lies at a position $n_i \geq 0$.

I have no idea why Yeomans drew this picture with increasing n_i going down; I would have drawn it upside down, with n_i increasing on the ordinate.

- a) Write down the transfer matrix of this model in terms of $x = \exp(-\varepsilon / k_B T)$ and $\kappa = \exp(K/k_B T)$. (Do not symmetrize the K term.)
- b) By considering an eigenvector of the form

$$(\varphi_0, \cos(q+\theta), \cos(2q+\theta), ...)$$

show that there is a continuous spectrum of eigenvalues

$$(1-x)/(1+x) \le \lambda \le (1+x)/(1-x)$$
.

Hint: To do the sums that arise, it is easier to write $cos(mq+\theta)$ as Re[exp[i(m $q+\theta$)]]. Alternatively and more simply, you can use the form in the next part and then recognize that μ is not real but instead pure imaginary.

c) Show that for $\kappa > (1-x)^{-1}$, there is also a bound state eigenvector of the form

$$(\varphi_1, e^{-\mu}, e^{-2\mu},...)$$
 corresponding to the eigenvalue $\lambda_1 = [\kappa(1-x^2)(\kappa-1)]/[\kappa(1-x^2)-1]$.

One can also show that this λ_1 , when it exists, is the largest eigenvalue; thus, it dominates the thermodynamics. Hence the critical value of K is given via $\kappa_c = (1-x)^{-1}$. (Adapted from Yeomans)

3. P&B problem 6.5

Hints for part a): The classical values of these critical exponents are $v_H = 1/3$ and $\eta_H = 0$. Start with the form of the Landau-Ginzburg equation on the critical isotherm:

$$h(\mathbf{r}) = g_3(T_c)m^3(\mathbf{r}) + g_4(T_c)m^5(\mathbf{r}) + ... - A\nabla^2 m(\mathbf{r})$$

Let $h(\mathbf{r}) = h_0 + h_1 \delta(\mathbf{r})$ and $m(\mathbf{r}) = m_0(T_{c,h}) + \phi(\mathbf{r})$ and keep only the leading power of m_0 and terms linear in ϕ . More hint: in 3D, $\phi(\mathbf{r}) = [(h_1/2\pi A)/r] \exp(-r/\xi)$.

4. Consider the q-color version of the 1D *q*-state Potts model on a large *N*-spin ring:

$$H = -J \sum_{i=1}^{N} \delta_{S_i,S_{i+1}}$$
, where $s_{N+1} \equiv s_1$

- a) Write down the transfer matrix and consider its simple form. One eigenvalue, the largest (λ_1), corresponds to an eigenvector for which all components are equal. Find its value. The remaining q-1 eigenvalues are degenerate; show that each is $\lambda_1 q$.
- b) Calculate the free energy per site in the thermodynamic limit.
- c) Using the eigenvalues from part a), write down the correlation length ξ and discuss its behavior as $T \rightarrow 0$.
- d) i) Show that this system is critical $(\xi \to \infty)$ at T = 0.
- ii) In the antiferromagnetic case (J < 0), is the system still critical at T = 0?