Department of Physics, University of Maryland, College Park, MD 20742-4111

Physics 404 HOMEWORK ASSIGNMENT #9 Spring 2008

Due date: Tuesday, April 22 **Deadline:** Thursday, April 24

B means a problem in Blundell & Blundell's text; GT means a problem in Gould & Tobochnik.

1. B 21.1 B21.2 is also well worth a look, but is not assigned. B21.4 was worked out in class.

2. B22.2

- 3. B22.6, parts a and b up to eq. 22.97. (You do NOT need to do the evaluation at 1000K.) Assume the H atom has single bound state with energy R. (Not my choice of notation for a characteristic energy!) You should also assume that the mass of H is essentially the same as that of a proton. (You do not then need to discuss assumptions.) Note that the result of B22.5, which you need to use, is a 2-liner, once you fix the typo N1 to the correct N!. You plug into $F = k_B T \ln Z_N$, use Stirling's approximation, use eq. 22.6, and combine the ln's. This problem makes use of eq. 21.50 from problem 21.6 (as is stated in the problem). The solution to problem 21.6 starts with eq. 21.19, then ignores excited states and sets the zero of energy at -R to get this result. I.e. the lowest energy state is at -R and kinetic energy adds to that in the same way it added to 0 to get 21.19. Note that $e^{\beta R}$ is in the argument of ln: $(Z_1^H/N_H)e^{\beta R}$ should be enclosed in big parentheses.
- 4. For the chemical reaction 2H₂ + O₂ → 2H₂O (in gas phase), find the equilibrium constant *K* in terms of partial pressures (cf. eq. 22.81) and in terms of the change in molar Gibbs free energies at STP, as in eq. 22.86. According to Schroeder the molar Gibbs free energies (to form a mole of the molecule from elementary atoms in their purest state) for H₂, O₂ and H₂O are 0, 0, and −228.57 kJ, respectively.
- 5. B23.1
- 6. B23.2 Note the typo in line 3: the function that should be maximized is $x^{\alpha}/(e^x-1)$. The exponent of e is x, and α .