PHYS 402 Homework---Due March 4

- 1. A Stern-Gerlach apparatus is set up to measure the component of spin of an electron along the direction in the x-z plane which makes an angle of θ relative to the z-axis. That is it is in the direction $\hat{n} = \cos(\theta)\hat{z} + \sin(\theta)\hat{x}$ A measurement is made and the electron us found to be spin up in this direction
 - a. Compute the eigenvector of this state as given in the standard basis (oriented along z)
 - b. Suppose following this measurement a second Stern-Gerlach apparatus oriented in the same direction measure the component of spin in the \hat{n} direction. What is the probability it will be spin up?
 - c. Suppose instead that following the initial measurement a second Stern-Gerlach apparatus oriented along the \hat{x} direction measures the spin component. What is the probability it will be spin up?
 - d. Suppose instead that following the initial measurement a second Stern-Gerlach apparatus oriented along the \hat{y} direction measures the spin component. What is the probability it will be spin up?
 - e. Suppose instead that following the initial measurement a second Stern-Gerlach apparatus oriented along the \hat{z} direction measures the spin component. What is the probability it will be spin up?
- 2. Suppose two spin ½ particles combine to make a system and the state of the system (as expressed in a basis of total spin and total third component of spin is known to be $|\psi\rangle = \frac{1}{\sqrt{2}} |0,0\rangle + \frac{1}{2} |1,0\rangle + \frac{1}{2} |1,1\rangle$
 - a. What is the probability that second particle is up?
 - b. What is the probability that the first particle is down and the second particle is up?
 - c. What is the probability that both particles are up?
 - d. What is the probability that both particles are down?
- 3. Show that the most general rotationally invariant (ie. scalar) Hamiltonian for two spin ½ particles can be represented as $\hat{H} = a\hat{1} + b\hat{s}_1 \cdot \hat{s}_2$ where a and b are constants and $\hat{1}$ is the unit matrix. Hint: how many states are there? What degeneracy do you expect?