PHYS 402 Homework---Due Friday April 29

- 1. Consider a beam of articles of m moving with velocity v towards a target. The beam has a density of particles of ρ and is kept on for a time T. Scattering from the target is known to be isotropic (all directions are the same) and to have a total cross section of σ (for particles incident with an energy of $\frac{1}{2}mv^2$). There is a detector of cross sectional area A located a distance R from the target and at an angle θ relative to the beam direction. Find an expression for the total number of particles hitting the detector under the assumption that $A << R^2$.
- 2. Consider the following scattering state wave function.

$$\psi(\vec{r},t) = e^{ikz} + \frac{\left(-\sin(k\,r) + i(1 - e^{-\beta\,r^2})\cos(k\,r)\right)}{k\,r}$$
 which is valid for all distances and

where β is a constant.

- a. Show that the $f(\vartheta) = i/k$ for all scattering angles.
- b. Find the differential cross-section.
- c. Find the total cross-section.
- d. Show that the only partial wave with a nonzero c_1 is the s wave (l=0).
- e. Find c_0 .
- f. Find the phase shift δ_0 .