PHYS 402 Homework---Due Friday April 22

- 1. Consider a particle of mass m moving in the one dimension delta function potential $V = -g\delta(x)$. Last term we showed the exact energy of the ground state is $-\frac{2mg^2}{\hbar^2}$. In this problem I would like you to try to estimate the energy of the ground state using trial wavefunctions of various forms. In all of the forms N is a normalization constant and α is a parameters. Which of these forms gives the best result? Do you have any intuition as to why?
 - a. $Ne^{-\alpha x^2}$
 - b. $\frac{N}{1+\alpha x^2}$
 - c. $\frac{N}{1+\alpha |x|}$
 - d. $Ne^{-\alpha|x|}$
- 2. Derive the viral theorem for three dimensions. In particular show that if the potential is written in polar coordinates that $\langle T \rangle = \frac{1}{2} \left\langle r \frac{\partial V(r, \theta, \phi)}{\partial r} \right\rangle$.
- 3. The potential due to the exchange of a massive scalar particle can be derived from quantum field theory and is known to be central and of the form $-\frac{g^2e^{-kr}}{r}$ where g and k and constants. Use the result of part one to find an expression for the expectation of the kinetic energy for this potential.