PHYS 402 Homework---Due Friday April 15

- 1. Consider a Hamiltonian which explicitly depends on time. At t=0 the Hamiltonian is \hat{H}_0 and at t=T it is \hat{H}_f . Suppose that at t=0 the system is in the ground state of \hat{H}_0 . We have argued in that if the time variation of the Hamiltonian is very slow (adiabatic), then at t=T it will be in the ground state of \hat{H}_f . In general, this does not mean, however, that there is no probability of finding the state in the ground state of \hat{H}_0 . Similarly we have argued that if the time variation is very fast, then at t=T the system will remain in the ground state of \hat{H}_0 . Again this does not mean that that there is no probability of finding the state in the ground state of \hat{H}_f . Show that the probability that the system is in the ground state of \hat{H}_0 at t=T for adiabatic time variations is exactly the same as the probability that it is in the ground state of \hat{H}_f for sudden ones.
- 2. A particle of mass m is in the ground state of a harmonic oscillator with natural frequency ω_0 at t=0. At t=0 a perturbation of the form $\hat{H}' = \frac{1}{2} m \omega_0^2 x^2 (1 e^{-t/\tau})$ is added on. Thus as $t \to \infty$ the system finds itself in a harmonic oscillator with a frequency of $\omega = \sqrt{2} \omega_0$.
 - a. Find the state of the system at long time for the regime $\omega_0 \tau >> 1$ (you may neglect phases).
 - b. Find the state of the system at long time for the regime $\omega_0 \tau \ll 1$ (you may neglect phases).
 - c. For the regime $\omega_0 \tau >> 1$ what is the probability that the system at long times is in the ground state of the original harmonic oscillator.
 - d. For the regime $\omega_0 \tau \ll 1$ what is the probability that the system at long times is in the ground state of the final harmonic oscillator.
- 3. A particle of mass *m* is in the ground state of an infinite spherical well of radius *R*. The walls of the well are slowly expanded to 2R. How much work does the particle to on the wall during this expansion?