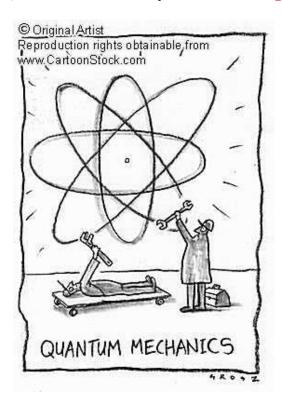
Phys 402 Spring 2009 Homework 5 Due Friday, March 13, 2009 @ 9 AM


- 1. Griffiths, 2nd Edition, Problem 6.38 Hyperfine transition in the ground state of Deuterium. Find the hyperfine states by combining spin-1 with spin-1/2.
- 2. Griffiths, 2nd Edition, Problem 4.34 Raising and lowering operations on the coupled spin states $|1 \rangle$, $|0 \rangle$. S^2 calculation.
- 3. Griffiths, 2nd Edition, Problem 5.4 Carry out the normalization of symmetrized wavefunctions
- 4. Griffiths, 2nd Edition, Problem 5.5 2-particles in the infinite square well. Ground state and first two excited state wavefunctions for distinguishable, fermion and boson particles.

Extra Credit #7

Griffiths, 2^{nd} Edition, Problem 6.21 Zeeman Effect in Hydrogen for n = 2

Extra Credit #8 Griffiths, 2nd Edition, Problem 4.56 (a) only

Generating function for rotations

Physics 402 Spring 2009 Prof. Anlage Discussion Worksheet for March 11, 2009

- **1.** The Slater determinant is a very handy way to construct antisymmetric wavefunctions of N-identical particle systems. Suppose you want to distribute particles into states a, b, c, etc. One forms rows of a determinant made up of $\psi_a(1)$ $\psi_b(1)$ $\psi_c(1)$... followed by the next row, written as $\psi_a(2)$ $\psi_b(2)$ $\psi_c(2)$..., where "1" and "2" represent the coordinates of particle 1, particle 2, etc. Multiply the determinant by $1/\sqrt{N!}$ for normalization.
- a) Form the antisymmetric wavefunction for two identical particles in states a and b.
- b) Form the antisymmetric wavefunction for three identical particles in states a, b and c. See what happens if a and c are the same state.

2. Consider a spin-1/2 particle. It is known to be in the "up" state after a measurement of S_z . Show that in this state $\left\langle S_x \right\rangle = \left\langle S_y \right\rangle = 0$. Explain this result geometrically.