Phys 402 Spring 2009 Homework 9 Due Friday, May 1, 2009 @ 9 AM

- 1. Griffiths, 2nd Edition, Problem 5.29 Follows the lectures on Bose-Einstein condensation
- 2. Griffiths, 2nd Edition, Problem 5.16 Fermiology
- 3. Griffiths, 2^{nd} Edition, Problem 5.37. Hint: To calculate the degeneracy of state E_n of the 3D harmonic oscillator you have to answer the question: "How many ways can we add three non-negative integers to get a particular sum n?"

Physics 402 Spring 2009 Prof. Anlage Discussion Worksheet for April 29, 2009

1. Macroscopic quantum model of superfluidity. To described the condensed phase of superfluid ⁴He, we posit the existence of a single quantum wavefunction that describes the collective behavior of all the atoms in the ground state: $\psi_0(\vec{r}) = \sqrt{n_0(\vec{r})} e^{i\theta(\vec{r})}$, where $n_0(\vec{r}) = |\psi_0(\vec{r})|^2$ is the local density of condensed particles, and $\theta(\vec{r})$ is the spatially varying phase. Using the definition of probability current (Eq. [4.193]), and reinterpreting it as the mass current, find the superfluid velocity \vec{v}_s in the expression $\vec{J} = n_0 \vec{v}_s$.

2. When superfluid ⁴He is constrained to flow in a circular channel, the circulation maintains itself with no dissipation. Show that the values of the circulation κ are restricted to the discrete quantum values $\kappa = \oint \vec{v}_s \cdot d\vec{l} = n \frac{h}{m}$, where $n = 0, \pm 1, \pm 2, \ldots$