Physics 401 Homework 4---Due September 30

- 1. In class we asserted that in quantum mechanics physical properties with Hermitian operators. These were defined an operator \hat{A} as Hermitian operator if $\int dx \psi^* (\hat{A} \psi)$ is real for all square integrable wave functions ψ . In this problem, you will use this definition to derive the following properties of Hermitian operators:
 - a. If $\int dx \, \psi_1^* (\hat{A} \psi_2) = \int dx \, (\hat{A} \psi_1)^* \psi_2$ for all square integrable wave functions ψ_1, ψ_2 then \hat{A} is Hermitian.
 - b. If \hat{A} is Hermitian, then $\int dx \; \psi_1^* (\hat{A} \psi_2) = \int dx \; (\hat{A} \psi_1)^* \psi_2$ for all square integrable wave functions ψ_1 , ψ_2 . Hint: consider $\psi = \psi_1 + \psi_2$ and use the definition.

Note that since the property $\int dx \; \psi_1^* (\hat{A} \psi_2) = \int dx \; (\hat{A} \psi_1)^* \psi_2$ is both necessary and sufficient for \hat{A} to be Hermitian (as shown in a. and b.) this property is an alternative definition for Hermiticity.

- c. If \hat{A} is Hermitian then \hat{A}^2 is also. Hint: consider $\psi = \hat{A}\phi$ and start with $\int dx \psi^* \psi$, which we know to be real and use the property in a).
- d. If \hat{A} and \hat{B} are Hermitian, then $\int dx \, \psi_1^* (\hat{A}\hat{B}\psi_2) = \int dx \, (\hat{B}\hat{A}\psi_1)^* \psi_2$ Hint use the property in part b. twice.
- e. If \hat{A} and \hat{B} are Hermitian, then $\hat{C} = \hat{A}\hat{B} + \hat{B}\hat{A}$ is Hermitian. Hint: use part d.
- f. If \hat{A} and \hat{B} are Hermitian, then $\hat{C} = i [\hat{A}, \hat{B}]$ is Hermitian. Hint: use part d.
- 2. Use the general form of the uncertainty relation to show that $\sigma_{x^2}\sigma_p \ge \hbar |\langle x \rangle|$ for any wavefunction. That is show that $(\langle x^4 \rangle \langle x^2 \rangle^2)(\langle p^2 \rangle \langle p \rangle^2) \ge |\hbar \langle x \rangle|^2$.
- 3. Show that in quantum mechanics $\frac{d\langle O \rangle}{dt} = \frac{i\langle \left[\hat{H}, \hat{O} \right] \rangle}{\hbar}$ where \hat{O} is a Hermitian operator associated with a physical observable that contains no explicit time dependence and \hat{H} is the Hamiltonian operator. Hint: Use the Schrödinger equation in the form $\hat{H}\psi = i\hbar \frac{d\psi}{dt}$.