An object falling in air satisfies the ordinary differential equation gotten from N2:

$$m\frac{dv}{dt} = -mg - bv$$

The equation has three dimensioned parameters (m, g, and b) and one dimensioned variable (v).

- (a) Use the fixed dimensioned parameters in this equation to create "natural" scales of mass, length, and time, M_0 , L_0 , and T_0 .
- (b) Using these scales, create a natural scale for the velocity, V_0 .
- (c) Define a dimensionless velocity V by the equation $V=v/V_0$.
- (d) Rewrite the original equation for v as an equation for V. This equation should contain no parameters that have any dimensions (or perhaps only combinations of parameters that have no dimensions).