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MP 25 Solution

a.   If we are ignoring gravity, there are only two forces on the ring.  The first is the normal force coming from the contact
between the ring and the rod.  Since the rod is frictionless, that force must always be directly perpendicular to the rod, to the
left.  The other force on the ring is the tension force from the string.  That force must be directed to the right, along the
direction of the string.  If the string makes a non-zero angle with the horizontal, then the normal and tension forces on the
ring do not balance, and the ring will accelerate.   Since the mass of the string is ~ 0, the acceleration will be very large
(almost infinite).  As a result, the ring will move very quickly, quickly establishing the zero-angle, no net force arrangement.
Thus, the string tends to make a zero degree angle with the horizontal where it connects with the ring. 

Thus our boundary conditions become:
yÅÅÅÅÅÅÅx  = 0 at x = 0 and at x = L for all times

If we look for the normal modes of the wave equation 2 yÅÅÅÅÅÅÅÅÅx2  = 1ÅÅÅÅÅÅÅÅÅvo 2
2 yÅÅÅÅÅÅÅÅÅt2  

y(x,t) = f(x) eiwt

we get the equation for f 
d2  fÅÅÅÅÅÅÅÅÅÅÅdx2 = - w2

ÅÅÅÅÅÅÅÅÅv0 2  f
which has the general solution

f(x) = Asin(kx) + Bcos(kx)
At x = 0 and L we have the boundary conditions

 fÅÅÅÅÅÅÅÅ x = 0
At x = 0 this implies

 fÅÅÅÅÅÅÅÅ x = 0 = Akcos(0) - Bksin(0) = Ak
so we must have A = 0.

 That has simplified things quite a bit, but we still have one more boundary condition to apply...the one on the derivative of y
at x = L:
   fÅÅÅÅÅÅÅx  =  -Bk sin(kL) 

so at x = L:
0 = sin(kL)
kL = np
kn  = npÅÅÅÅÅÅÅL   where n = 0,1,2,3 ....  and wn  = vokn

So we have
yn (x,t) =  Cocos( npxÅÅÅÅÅÅÅÅÅL ) cos( np vo  tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅL +f)

Note the difference here compared to the ends-tied-down example from class...here we include the n = 0 possibility.  The
reason is that here the solutions go as cos(nx), so putting in n = 0 doesn't zero out the y(x,t).  When both ends were tied down,
the solutions went as sin(nx), where putting n = 0 in would just give a superfluous zero everywhere.

Now, the main point of the whole find-the-set-of-normal-modes  business is that it allows us to momentarily forget
about the time dependence (i.e. the cos( np vo  tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅL +f) bit).  With our set of normal modes, we'll be able to easily make a linear
combination of our set of linearly independent solutions fn(x) = Cocos( npxÅÅÅÅÅÅÅÅÅL ) that gives us any initial shape we please.  Once
we have that initial shape, expressed in terms of a sum over the fn (x), we can simply tack on the time-dependence we found
above, and have our complete solution.

Note that this approach is analogous to what we were doing before with our 2 coupled oscillators.  There, we had two
normal modes, out of which any motion could be built.  Here, we have an infinite set of normal modes (which are functions
now, not column vectors) out of which any motion can be built.

If we make our normal modes |n> ØCncos( npxÅÅÅÅÅÅÅÅÅL ) ,  we should make sure to normalize them so we don't  have extra
constants floating around when we go to construct a certain initial shape.
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1 = <n|n> = Ÿ0

L
 Cn  cosH npxÅÅÅÅÅÅÅÅÅL L Cn  cosH npxÅÅÅÅÅÅÅÅÅL L „ x = Cn 2 Ÿ0

L
 cos2  H npxÅÅÅÅÅÅÅÅÅL L „ x = Cn

2  LÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2

 so  Cn  = "#####2ÅÅÅÅÅL
 Thus, our normal modes are:
 fn(x) = "#####2ÅÅÅÅÅL cosH npxÅÅÅÅÅÅÅÅÅL L   where n = 0,1,2,3...
 As a final check, note our boundary conditions on  yÅÅÅÅÅÅÅx  at x = 0 and L are still satisfied by these normal modes.

b.      Say we have a given initial shape, f(x) Ø |f>.  Then we must be able to express this function as some linear combination
of our |n> from above:

|f> = ⁄n=0
¶ fn |n>

To figure out what the expansion coefficients (i.e. the fn ) are, we can imagine hitting the equation above with a bra from the
left:

<m|f> = <m|  ⁄n=0
¶ fn |n> 

=  ⁄n=0
¶  <m| fn |n> 

=  ⁄n=0
¶  fm<m |n>

=  ⁄n=0
¶  fmdm,n

= fm
Thus, the expansion coefficients are given by:

fn  = <n|f> = ‡
0

L
 "#####2ÅÅÅÅÅL  cosH npxÅÅÅÅÅÅÅÅÅL L f HxL „ x

c.     I discussed above in part "a", why the n = 0 mode is mathematically possible and useful here but not in the previously
seen ends-tied-down case.  Let's take a closer look at what exactly goes on in this mode, although first it will be helpful to
look at what happens with any other n ≠ 0 mode when we consider how it satisfies the wave equation.

yn(x,t) =  "#####2ÅÅÅÅÅL cos( npxÅÅÅÅÅÅÅÅÅL ) cos( np vo  tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅL +f)
The long-winded math of part "a" was done in order to guarantee that this is a solution to

2 yÅÅÅÅÅÅÅÅÅx2  = 1ÅÅÅÅÅÅÅÅÅvo 2
2 yÅÅÅÅÅÅÅÅÅt2

Specifically:
2 yÅÅÅÅÅÅÅÅÅx2  = - ( n2  p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅL2 ) "#####2ÅÅÅÅÅL cos( npxÅÅÅÅÅÅÅÅÅL ) cos( np vo  tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅL +f)
2 yÅÅÅÅÅÅÅÅÅt2  =  - ( n2  p2  vo 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅL2 ) "#####2ÅÅÅÅÅL cos( npxÅÅÅÅÅÅÅÅÅL ) cos( np vo  tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅL +f)
So we see that yes,  indeed, the yn (x,t)'s satisfy 2 yÅÅÅÅÅÅÅÅÅx2  = 1ÅÅÅÅÅÅÅÅÅvo 2

2 yÅÅÅÅÅÅÅÅÅt2 .  There's  a certain structure to the x-dependence of yn (x,t)
which brings out the ( n2  p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅL2 ) factor upon taking two derivatives.  This MUST be matched by a similar structure in the time
dependence of yn(x,t), so that the double time derivative makes the right side of the wave equation match the left side.

The catch is what happens in the unique case of n = 0, where  yn(x,t) has NO x-structure.  After all, "#####2ÅÅÅÅÅL cos( 0 pxÅÅÅÅÅÅÅÅÅÅL ) =
"#####2ÅÅÅÅÅL cos(0) = some non-zero constant.  Now we have 2 yÅÅÅÅÅÅÅÅÅx2  = 0, and the wave equation gives us some unique breathing room
in determining the time dependence of our solution:

2 yÅÅÅÅÅÅÅÅÅx2  = 1ÅÅÅÅÅÅÅÅÅvo 2
2 yÅÅÅÅÅÅÅÅÅt2

0 = (some constants) 2 yÅÅÅÅÅÅÅÅÅt2

0 = 2 yÅÅÅÅÅÅÅÅÅt2

So apparently an n = 0 solution of the form y0 (x,t) = C1 + C2 t is allowed.  Look familiar?  It's just the equation for the posi-
tion of an object that is moving at a constant velocity C2  that had an initial position C1 .  Physically, this n = 0 mode can be
excited by putting your hand under the entire length of string (so that all the pieces of the string move together) and shoving
the whole  string,  together,  upwards.  Since the ends are free to move along the rods,  the whole string will just translate
upwards without any ripples or pulses bouncing back and forth on it.

Solution by T. Bing
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