
Where does the 

! 

2"  in the Fourier transform come from? 
 

To derive the factor we will start by assuming that  
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x k = Ae
ikx  

and we will choose A so that when we use completeness to put a “k-basis” inside the 
delta function, it still works like it’s supposed to.  That is, 
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We can’t actually do the integral, so “works like it’s supposed to” means, when we put it 
under an integral, it picks out the right value.  In other words, if we integrate an arbitrary 
function f(x), we get: 
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This means we must choose A such that 
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The trick is, in order to evaluate the integral, we switch the order of integration and 
choose a particular function where we can do the integrals.  So we want to evaluate 
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for a particular f.  One where we can do the integrals explicitly is* 
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f (x) = e
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but to do the integrals explicitly, we have to evaluate two particular integrals.  We’ll do 
these as Lemmas (little theorems for use on the way to a bigger proof). 
 

Lemma 1:  
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The proof of this is long, but elegant, and combines a variety of different tools. 
Proof of Lemma 1: 

                                                
* For this proof, we are going to be mathematicians and assume everything is 
dimensionless.  The proofs are messy enough without having to carry along constants to 
specify dimensions. 



The idea is to generalize this integral from a number to a function by introducing a 
parameter.  So we write: 
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If we cube this, we can write 
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When we cubed it, we chose convenient (and suggestive) different dummy variable for 
each term and then combined them. 

We can now treat the triple integral as if it were just a 3-D integral and go to polar 
coordinates.  Since the integrand is only a function of x2 + y2 + z2 = r2, we can do the 
angular integrals and get: 
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(We are replacing the sum over small cubes by sums over spherical shells whose surface 
area is 4πr2 and whose thickness is dr.)  Now this integral is very much like I(λ), but not 
quite.  It only goes from 0 to infinity, not from –infinity to +infinity and it has an extra 
factor of r2.  We can easily handle this by using a couple of tricks.  First, the integrand is 
symmetric so we can do the integral over the entire range and divide by two.  Second, we 
can use a derivative trick. 
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The first part is as follows: 
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The second part works like this: 

! 

I(")( )
3

= 2# r
2
dr e

$"r 2

$%

%

& = 2# $
d

d"
dr e

$"r 2

$%

%

&
' 

( 
) 

* 

+ 
,  

When the derivative with respect to lambda is taken inside the integral, it brings down the 
required factor of –r2, but we can do the integral first and differentiate second. 
Well, we can’t actually do the integral (yet), but we can recognize it as I(λ) again, just 
with a different dummy variable (r this time).  So we get the interesting equation: 
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We can solve this equation by standard techniques! 
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where C is an integration constant.  We can figure it out by looking at our integral.  If λ 
goes to 0, then the integrand becomes 1 and the integral goes to infinity.  Putting these 
values in, we see that C has to be 0.  We therefore have the result: 
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Since we want the value for λ = 1, we just get the quoted result. 

QED (Lemma 1) 

 

Lemma 2: 
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Proof of Lemma 2. 

We do this one by completing the square in the exponential and changing variables thus: 
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Defining a new integration variable, 
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 and noting that, since the shift is just a 

constant, dz’ = dz, we can write: 
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where we have used Lemma 1 to evaluate the z’ integral. 

QED (Lemma 2) 
 

Now we are ready to derive the factor.  If the completeness relation inside the delta 
function is to work we must have 
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for any function.  In particular, it must work for the function 
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Putting this in and applying Lemma 2 gives 

! 

A
2

dk dx ' e
ik(x"x ' )

e
"x ' 2

"#

#

$ =
"#

#

$ A
2

dk e
ikx

dx' e
" ikx'
e
"x ' 2

"#

#

$ =
"#

#

$ A
2

dk e
ikx %e

"k
2

4

"#

#

$ . 



Applying Lemma 2 again gives 
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Since this has to equal 
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