The rules which apply to the familiar Cartesian linear space may be generalized to a more
exotic function vector space, such as the space of sines (sin(zx)). In both spaces, any
vector in the space may be constructed from a set of basis vectors. In the 3-D Cartesian
position vector space, these are typically represented by |e;>, |e2>, and |e;> which can be
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any orthonormal set of vectors which span the space, but commonly |0},{ 1],{0|. The set
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of sines has an analogous set of basis vectors, en> = Tsm(n 0). This is an infinite
1

dimensional basis (n can be any integer!), but again, any function can be represented as
these basis vectors. [better: as a sum over these basis vectors)

Orthonormality isn’t necessary in constructing a basis, but it is convenient.
Orthonormality is the condition that, for some vectors [better: in the basis] |e,> and |exn>,
(e,|e,)=6,,. In Cartesian space, |e;> and |e;> are obviously perpendicular in the above

basis and <e;|e;> is, again, clearly 1.

When generalizing to a function space, though, the inner product rules become more
complicated. <ep|en,™> is now equivalent to
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and the normalization condition is
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where 4, can be solved for to equal y .
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In Cartesian space, completeness is the concept that any vector in the space may be
represented by a sum of the basis vectors times some constants:

3
e,)

=S
|v>= an en>;

the only difference is the summation, to three versus to infinity, and of course the
different bases.

similarly, in function space, a vector

Function space is remarkably similar to Cartesian 3-D space, except that some operations
must be redefined, such as the inner product, to make sense. Dirac notation emphasizes
the similarities: the inner product is still written the same way. However, when
evaluating it, the difference between the two spaces become more pronounced.



