
Prof. E. F. Redish

Dirac Notation

Motivation
Notation can help us substantially in thinking about and manipulating symbolic
representations meant to describe complex physical phenomena. The brain’s working
memory can only manipulate a small number of ideas at once (“7±2”). We handle
complex ideas by “chunking” — binding together many things and manipulating them as
a single object. Another way we extend our range is by storing information outside of
our brains temporarily and manipulating external objects or symbols, like an abacus or
equations written on a piece of paper.
Notation — the way we choose to organize our symbology to represent something — can
play a powerful role in helping us think about a complex situation. In Maxwell’s day, the
equations for electric and magnetic fields were written out component by component, so
his equations took up a full page of text. Looking at those equations, it’s clear that there
is a regularity to the equations that should allow for some compression. When Gibbs
introduced his vector notation, Maxwell’s equations could be collapsed into 4 lines.
Furthermore, they had the advantage that they did not depend on the choice of coordinate
system. You could use the same equations, manipulate them as you wished, and then
introduce a particular choice of coordinate (e.g., a particular orientation of rectangular
coordinates or a convenient set of curvilinear coordinates) after you were done.
A similar situation pertains for dealing with linear spaces. In some cases, we might want
to describe a system of coupled oscillators with the coordinates of the masses. In other
cases, we might want to describe them in terms of how much of each normal mode is
excited. This change corresponds to a change of coordinates in the linear space
describing the state of the system. We would like to have a representation that describes
the state without specifying the particular coordinates used to describe them.
Other cases where linear spaces are useful include cases where complex numbers are
helpful in describing the physical system. Some examples of this include: polarization of
electromagnetic waves (linear vs. circular), wave motion of mechanical systems (Fourier
analysis), and quantum physics.
The Dirac notation for states in a linear space is a way of representing a state in a linear
space in a way that is free of the choice of coordinate but allows us to insert a particular
choice of coordinates easily and to convert from one choice of coordinates to another
conveniently. Furthermore, it is oriented in a way (bra vs. ket) that allows us to keep
track of whether we need to take complex conjugates or not. This is particularly useful if
we are in an inner-product space. To take the length of a complex vector, we have to
multiply the vector by its complex conjugate — otherwise we wont get a positive
number. The orientation of the Dirac representation allows us to nicely represent the
inner product in a way that keeps careful track of complex conjugation.

Prof. E. F. Redish

The Dirac Representation of States in a Inner Product Space
Suppose we consider a two-dimensional complex linear inner-product space. A general
vector in this space takes the form

€

r a =αr e 1 + β
r e 2

where α and β are complex numbers and e1 and e2 are (real) basis vectors. We define our
inner product to be

€

r a =αr e 1 + β
r e 2

r
b = γr e 1 + δ

r e 2
r a ⋅

r
b =α*β + γ *δ

We put complex conjugates on the left vector’s components so that

€

r a ⋅ r a =α*α + β*β = α
2

+ β
2
≠α 2 + β 2

We use the complex conjugate because if we just took α2 + β2, it wouldn’t always be
positive. It wouldn’t necessarily even be a real number and we want the length of a
vector to be a real positive number.
This is very natural if we are working in a particular coordinate basis so we can write the
vector as a two-component (complex) vector. The dot product is then just the matrix
product of a row vector with a column vector:

€

r a ↔
α

β

r a *↔ α* β*()

r a ⋅ r a → r a * ⋅ r a ↔ α* β*()
α

β

 =α

*α + β*β

Notice that in a complex space, all complex coefficients are in the space, so given the

vector

€

r a ↔
α

β

 the vector

€

r a *↔
α*

β*

 is just another vector in the space. But for the

vector

€

r a it is a special vector. It is associated with

€

r a by the operation of complex
conjugation. To get the length of a vector in a complex space, instead of taking the dot
product of the vector with itself, we take the dot product of the vector with another vector
in the space — the one associated with the original vector by complex conjugation.
Now using the one- and two-column representations of our vectors is fine if we are never
going to be changing coordinates. If we are, the column vector becomes ambiguous.
Which basis vectors do we mean that a particular column goes with? We want a
representation that is basis independent and allows us to put a particular basis in as we
chooses. We also want one that will keep track of whether we are talking of our original
vector or whether we have complex conjugated it in order to take an inner product.
A notation that does this very nicely was invented by the physicist P. A. M. Dirac for
quantum physics — but we can use it anywhere. The notation chooses to enclose the
vector symbol in a surround marker rather than putting an arrow over it. Dirac chose the

Prof. E. F. Redish

notation of “half a bracket” (a ket) to represent a vector. The other half of the bracket (a
bra) was used to represent the vector’s complex conjugate. Putting them together gave a
“bra-ket” or “bracket” that represented a number — the inner product. Here’s how it
works in symbols:

€

r a = a r a * = a r a * ⋅ r a = a a = a a

Notice when a bra and a ket are put together to make a number the two lines are collapsed
into a single line to show that they are bound into a single object. In a particular basis,
this corresponds to the component notation as follows.

€

a b =
r a ⋅

r
b = a1

* a2
*()

b1
b2

 = a1

*b1 + a2
*b2

The Outer Product
The Dirac notation nicely represents something else that happens in a linear space:
matrices. A matrix is a linear operator that acts on a vector to give another vector back.
The fact that it is linear means:

€

If Ar a = r a ' and A
r
b =

r
b '

then A(αr a + β
r
b) =α

r a '+
r
b '()

.

In a way, the simplest way to do this is to take the original vector, take its dot product
with a second vector to get a number, and multiply is by a third vector. This combination
of the second and third vector is called the outer product of the vectors, written

€

r a ⊗
r
b .

This is a linear operator acting on a vector by the rule

€

r a ⊗
r
b ()r c = r a

r
b ⋅ r c ()

where the combination in the parentheses on the right is the dot product. This therefore
takes a vector in the

€

r c direction and gives back one in the

€

r a direction.
For a 2x2 example in component notation, this is just the reverse of the inner product;
where the inner product was a row vector (1x2) times a column vector (2x1) yielding a
number (1x1), the outer product is a column vector (2x1) times a row vector (1x2)
yielding a matrix (2x2).

€

r a ⊗
r
b ↔

a1
a2

 b1

* b2
*() =

a1b1
* a1b2

*

a2b1
* a2b2

*

Remember the general rule that you can multiply an NxK matrix times a KxM matrix to
get an NxM matrix. In equations, the rule is

€

AB()ij = AikBkj i =1...N, j =1...M
k=1

K

∑ .

To see what is really going on here, it is useful to look at what happens when we take the
outer product of two basis vectors. If we have an orthonormal basis,

€

ˆ e i i =1...N , then the

Prof. E. F. Redish

outer product

€

ˆ e i ⊗ ˆ e j acting on a vector

€

r a picks out the j-th component of the vector and
gives it back in the i-th direction; that is:

€

ˆ e i ⊗ ˆ e j()r a = ˆ e i ˆ e j ⋅
r a () = a j ˆ e i

The matrix that does this job is the one with 1 in the j-th row and i-th column and 0
everywhere else. We can therefore write any matrix as an outer product operator

€

A = Aij ˆ e i ⊗ ˆ e j
i, j=1

N

∑

The Dirac Representation of the Outer Product
The outer product of two vectors in an inner product space (i.e., a linear space where an
inner product is defined) is particularly convenient and conveys a lot of meaning,
especially in a space where you can take complex conjugates. The Dirac form of the
outer product is like the row/column vector notation except without reference to a
particular basis; it is the opposite of the inner product. We write:

€

r a ⊗
r
b = a b

The vector on the right goes in the bra since we know its rule is that it is going to come
up on a vector and inner product with it from the left. We also remember the vector on
the left in an inner product has to have its complex conjugate taken. The vector on the
left in an outer product goes in the ket since its rule tells us this is the direction of the
state vector we are going to be left with and we consider the typical state vector to be a
ket. In the outer product form with the circled “x”, we just have to remember which
vector gets the complex conjugate. The Dirac notation reminds us by its structure.
You can quickly get used to the idea of how this works if you think of a bra-ket (the inner
product) as a bracket — the two vectors are “striving” to collapse comfortably into a
number. Whereas the ket-bra (the outer product) is not a bracket — it is open —
“hungry” to devour a ket on the right and collapse back into a vector. The orthography
(the way the symbols are structured) makes this quite natural:

€

a b() c = a b c().

(Read that carefully: On the left, we have an outer product acting on a vector. Removing
the parentheses just puts a bra and a ket together. We collapse them into a bra-ket — an
inner product or a number.)
The rule about the matrices and the outer product produces a pair of useful results.

€

A = Aij ei e j
i, j=1

N

∑ = ei Aij e j
i, j=1

N

∑

I = ei δij e j
i, j=1

N

∑ = ei ei
i=1

N

∑

