
■ Theme Music: Miles Davis It Never Entered My Mind

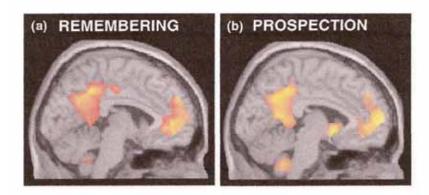
■ <u>Cartoon:</u> Brooke McEldowney 9 Chickweed Lane

Remember!

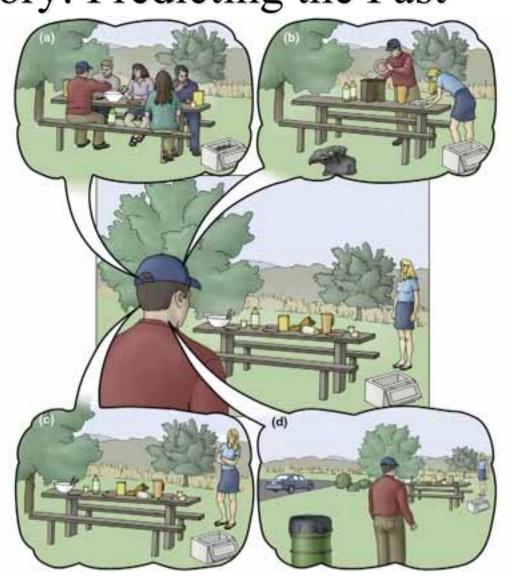
- To go to a discussion this week to do the physics pre-test.
- To go online to do the attitude survey.

 http://perg-surveys.physics.umd.edu/
 MPEX2pre.php
- To purchase MP and do the first assignment.
- To purchase and register your clicker. (24 of you still have not done so.)

In order to learn how to learn, we need to know something about how we think.


9/1/10

First icon: Refining and reconciling intuition


- Your physical intuition is often good you have, after all, had a lot of experience living in the physical world.
- But often we use "one-step reasoning" and miss details that would cause us to reinterpret what we see.
- A major goal of this class is to help you refine your physical intution and reconcile it with the physics we learn.

A model of memory: Predicting the Past

- (a) Recalling past events
- (b) Imagining future events
- (c) Seeing things from someone else's perspective
- (d) Navigation

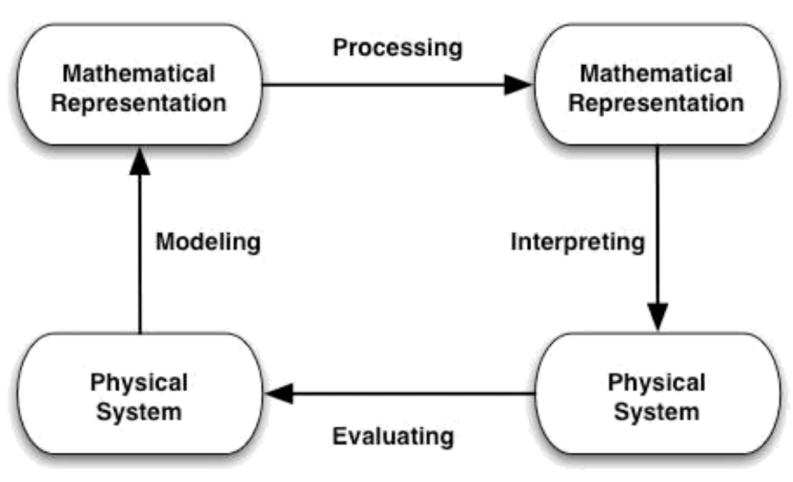
From Buckner & Carroll Trends in Cog. Sci. 11:2 (2006)

Second icon: Coherence – Your safety net

■ Throughout the class we will be looking to see physical situations in a variety of different ways.

■ The consistency among the different views protects us against errors of reconstructed memory.

Small barriers


- In this class there can be lots of small barriers that we need to take down.
- Sometimes it's because you're not sure what you're supposed to pay attention to!
- Sometimes previous experience leads to confusion or uncertainties that are hard to remove.
- Most are not a big deal they can be made sense of and cleared up in a couple of hours of work, thinking, and practice.
- The presence of a lot of these barriers can cause a lot of trouble. Clean up as many as you can!

Don't be afraid to come in and say, "I'm confused about fractions" – or anything else!

We're going to use math

- Math is the study of abstract relationships (mostly quantitative not all!)
- With math, you don't have to know what you're talking about to make sense.
 - We can interpret y = 2x without knowing what kind of thing x or y is.
- In using math in science we try to choose math that fits the basic character of the phenomenon we are trying to describe.
 - We then inherit from the math tools to solve problems we can't do in our heads.
 - The math is often remarkably good,
 but it is never a perfect fit! (However...)

A model of math in science

Quantifying your personal experience: Estimation problems

- The trick is to figure out the numbers you need using what you really know (NOT guessing or just remembering).
- Create a set of useful measures!

0cm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

See hints to doing estimations on our ELMS site!

9/1/10

My personal scales

	inches	centimeters	
First digit of thumb			
Open handspan			
Forearm (cubit)			
Full height			
			1

9/5/08

Estimation: Some numbers I will expect you to know

■ Numbers

 number of UG students at UMd 	~ 25,000	2.5×10^4
 number of people in MD 	\sim 4-5 million	4.5×10^6
 number of people in USA 	~ 300 million	3.0×10^8
 number of people in world 	~ 5-6 billion	5×10^9

Distances

distance across DC	~10 miles
 distance across USA 	~3000 miles
 distance around the world 	~24,000 miles
 radius of the earth 	$= 2/\pi \times 10^7 \text{ m}$