Woodstoves

Question

Which is more effective at heating a room:

- 1. a black woodstove
- 2. a white woodstove

Thermal Energy

- · is disordered energy
- is the kinetic and potential energies of atoms
- gives rise to temperature
- does not include order energies:
 - kinetic energy of an object moving or rotating
 - potential energy of outside interactions

Heat

- is the energy that flows between objects because of their difference in temperatures
- Heat is thermal energy on the move
- Technically: object's don't contain heat

Burning Wood

- Burning releases chemical potential energy
 - Wood and air consist of molecules
 - Molecules are held together by chemical bonds
 - When the bonds rearrange, they release energy
 - Burning involves bond rearrangement

Chemical Forces

- · Atoms exert electromagnetic forces on each other
- · At large separations, atoms attract
 - Attraction is weak at great distances
 - Attraction gets stronger as atoms get closer
 - Attraction eventually reaches a maximum strength
 - Attraction weakens as they approach further
- At medium separations, atoms are in equilibrium
 - Attraction vanishes altogether at equilibrium
- · At close separations, atoms repel
 - Repulsion gets stronger as atoms get closer

Chemical Bonds

- · When two atoms are brought together, they
 - do work
 - release chemical potential energy
- By the time they reach equilibrium, they
 - have released a specific amount of energy
 - have become bound together chemically
- To separate the two atoms,
 - you must do work on them
 - return that specific amount of energy to them

Chemical Concepts

- Molecule—atoms joined by chemical bonds
- Chemical bond—chemical-force linkages
- · Bond strength—work needed to break bond
- Reactants—starting molecules
- Reaction products—ending molecules

Chemical Reactions

- · Breaking bonds takes work
- Forming bonds does work
- If reaction-product bonds are stronger than reactant bonds, then
 - chemical potential energy → thermal energy
- Breaking reactant bonds requires energy
 - reaction may require activation energy to start

Burning Wood

- · Reactants: carbohydrates and oxygen
- Reaction products: water and carbon dioxide
- · Activation energy: a burning match

Thermal Energy and Bonds

- Thermal energy causes atoms to vibrate
- Atoms vibrate about equilibrium separations
 - Experience restoring forces about equilibrium
 - Energy goes: potential to kinetic to potential . . .
 - Total energy constant unless transferred away
- Temperature set by thermal kinetic energy

Heat and Temperature

- Touching objects exchange thermal energy
 - Microscopically, energy flows both ways
 - On average, energy flows one way
- Temperature predicts energy flow direction
 - Energy flows from hotter to colder
 - No flow \rightarrow thermal equilibrium \rightarrow same temp
- Temperature turns out to be
 - average thermal kinetic energy per particle

Open Fire

- · Burns wood to release thermal energy
- · Good features:
 - Heat flows from hot fire to cold room
- Bad features:
 - Smoke enters room
 - Fire uses up room's oxygen
 - Can set fire to room

Fireplace

- · Burns wood to release thermal energy
- Good features:
 - Heat flows from hot fire to cold room
 - Smoke goes mostly up chimney
 - New oxygen enters room through cracks
 - Less likely to set fire to room
- · Bad features:
 - Inefficient at transferring heat to room

Woodstove

- Burns wood to release thermal energy
- Good features:
 - Heat flows from hot fire to cold room
 - All the smoke goes up chimney pipe
 - New oxygen enters room through cracks
 - Relatively little fire hazard
 - Transfers heat efficiently to room

Heat Exchanger

- Woodstove is a heat exchanger
 - Separates air used to burn wood from room air
 - Transfers heat without transferring smoke

Heat Transfer Mechanisms

- Conduction—heat flow through materials
- Convection—heat flow via moving fluids
- Radiation—heat flow via light waves
- · All three transfer heat from hot to cold

Conduction

- Heat flows through material but atoms don't
- In an insulator,
 - adjacent atoms jiggle one another
 - microscopic exchanges of energy; atoms do work
 - on average, heat flows from hot to cold atoms
- In a conductor,
 - mobile electrons help carry heat long distances
 - heat flows quickly from hot to cold via electrons

Woodstoves

- Conduction
 - moves heat through the stove's metal walls

Convection

- Fluid transports heat stored in its atoms
 - Fluid warms up near a hot object
 - Fluid flows away, carrying thermal energy with it
 - Fluid cools down near a cold object
 - Overall, heat flows from hot to cold
- Natural buoyancy drives convection
 - Warmed fluid rises away from hot object
 - Cooled fluid descends away from cold object

Woodstoves

- Conduction
 - moves heat through the stove's metal walls
- Convection
 - circulates hot air around the room

Radiation

- Heat transferred by electromagnetic waves (radio waves, microwaves, light, ...)
- Wave types depend on temperature
 - cold: radio wave, microwaves, infrared light
 - hot: infrared, visible, and ultraviolet light
- Higher temperature → more radiated heat
- Black emits and absorbs light best

Stefan-Boltzmann Law

- The amount of heat a surface radiates is power = emissivity · Stefan-Boltzmann constant
 - ·temperature⁴ · surface area
 - where emissivity is emission efficiency
 - Emissivity
 - ranges from 0 (bad) to 1 (good)
 - 0 is white, shiny, or clear; 1 is black

Woodstoves

- Conduction
 - moves heat through the stove's metal walls
- Convection
 - circulates hot air around the room
- Radiation
 - transfers heat directly to your skin as light

Campfires

- No conduction, unless you touch hot coals
- No convection, unless you are above fire
- Lots of radiation: your face hot, back cold

Question

Which is more effective at heating a room:

- 1. a black woodstove
- 2. a white woodstove