Rockets

Question:

- If there were no launch pad beneath the space shuttle at lift-off, the upward thrust of its engines would be
- 1. approximately unchanged.
- 2. approximately half as much.
- 3. approximately zero.

Momentum Conservation

- A rocket's momentum is initially zero
- The momentum redistributes during thrust
 - Ship pushes on fuel; fuel pushes on ship
 - Fuel acquires backward momentum
 - Ship acquires forward momentum
- Rocket's total momentum remains zero

Question:

- If there were no launch pad beneath the space shuttle at lift-off, the upward thrust of its engines would be
- 1. approximately unchanged.
- 2. approximately half as much.
- 3. approximately zero.

Stability and Orientation

- · On the ground, rocket needs static stability
- In the air, rocket needs aerodynamic stability
 - Center of aerodynamic pressure behind c.o.m.
- In space, rocket is a freely rotating object
 - Orientation governed by angular momentum
 - Rocket can travel in any orientation

Ship's Ultimate Speed

- · Increases as
 - ratio of fuel mass to ship mass increases
 - fuel exhaust speed increases

• If fuel were released with rocket at rest, ultimate speed = $\frac{\text{fuel mass}}{\text{ship mass}} \cdot \text{exhaust speed}$

- Because rocket accelerates during thrust,
 - ultimate speed is less than given above

Gravity

- The acceleration due to gravity is only constant for small changes in height
- When the distance between objects changes substantially, the full relationship is:

Orbits

- An object that has a sideways velocity doesn't fall directly toward the earth
- The object follows a trajectory called an orbit around the earth
- Orbits can be closed or open, and are ellipses, parabolas, and hyperbolas