Bouncing Balls

Question:

If you place a tennis ball on top of a basketball and drop this stack on the ground, how high will the tennis ball bounce?

- 1. To approximately its original height.
- 2. Much higher than its original height.
- 3. Much less than its original height.

Bouncing from Stationary, Rigid Surfaces

- Approaching ball has kinetic energy.
- Bouncing ball has elastic potential energy.
- Rebounding ball has kinetic energy.
- Approaching energy ≡ "collision" energy.
- Rebounding energy = "rebound" energy.
- Some energy is lost to thermal energy.
- Lively balls lose little, dead balls lose much.

Coefficient of Restitution

- Measure of a ball's liveliness.
- Ratio of outgoing to incoming speeds.

 $Coefficient of Restitution = \frac{Outgoing Speed}{Incoming Speed}$

Bouncing from Stationary, Elastic Surfaces

- Both ball and surface dent during bounce.
- Work is proportional to dent distance.
- Surface stores part of collision energy.
- Surface returns part of rebound energy.
- Surface liveliness or deadness is important.

Bouncing from Moving Surfaces

- Incoming speed becomes approaching speed.
- Outgoing speed becomes separating speed.
- Coefficient of Restitution becomes:

Coefficient of Restitution = $\frac{\text{Separating Speed}}{\text{Approaching Speed}}$

Ball and Bat – Part 1

- Ball approaches home plate at 100 km/h.
- Bat approaches pitcher at 100 km/h.
- Approaching speed is 200 km/h.

Ball and Bat – Part 2

- Approaching speed is 200 km/h.
- Baseball's Coefficient of Restitution is 0.55.
- Separating speed is 110 km/h.

Ball and Bat – Part 3

- Separating speed is 110 km/h.
- Bat approaches pitcher at 100 km/h.
- Ball approaches pitcher at 210 km/h.

Question:

If you place a tennis ball on top of a basketball and drop this stack on the ground, how high will the tennis ball bounce?

- 1. To approximately its original height.
- 2. Much higher than its original height.
- 3. Much less than its original height.

Bouncing's Effects

- Bouncing involves momentum transfer
 - Momentum transferred while stopping
 - Momentum transferred while rebounding
 - A better bounce transfers more momentum
- Bouncing can involve energy transfer
- Together, these transfers govern bouncing
 - Identical elastic balls transfer motion perfectly

Impact Forces

- Harder surfaces bounce faster
 - Momentum is transferred faster
 - Time is shorter, so force is larger
- No one wants to bounce off a hard surface

Ball's Effects on a Bat

- Ball pushes bat back and twists it, too
- At center of percussion,
 - motion backward and rotation cancel at handle
 - Handle doesn't jerk when the ball hits it
- Ball makes bat vibrate in fundamental mode
- At vibrational node,
 - bat doesn't vibrate when the ball hits it