Nuclear Weapons

Question:

Is it possible to have 100 tons of plutonium and not have it explode?

Observations About Nuclear Weapons

- · They release enormous amounts of energy
- They produce incredible temperatures
- They produce radioactive fallout
- They are relatively hard to make
- They use chain reactions

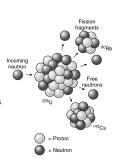
Atomic Nucleus

- · Atoms are usually electrically neutral
 - They must have as many + charges as charges
 - Each electron must be matched by a + charge
- At the center of an atom is its nucleus
 - Extremely small (1/100,000th of the atom's diameter)
 - Contains most of the atom's mass
 - Also contains most of the atom's potential energy
 - Evidence is related to: $E=mc^2$

Structure of Nucleus

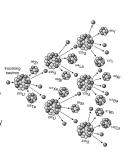
- Nucleus contains two kinds of nucleons
 - Protons are positively charged
 - Neutrons are neutral
- Two forces are active in a nucleus
 - Electrostatic repulsion between protons Sodium nucleus (11 protons, 12 neutrons)
 - na pueloone
 - Nuclear force attraction between touching nucleons
 - At short distances, nuclear force is stronger than electric
 - At long distances, electric force is stronger than nuclear

Nuclear Stability


- In a nucleus, nucleons are in equilibrium
- To be classically stable, equilibrium must be stable
- To be quantum-mechanically stable, equilibrium must also be the potential energy minimum
- Quantum mechanics and the Heisenberg uncertainty principle allow the nucleons to try out arrangements outside their equilibrium positions
- If they find a path to a new equilibrium, they may take it and the nucleus may fall apart

Radioactivity

- Protons repel one another & neutrons are unstable
- Large nuclei have two problems:
 - Too many protons, then too much electrostatic potential
 - Too many neutrons, then neutrons are unstable
 - Delicate balance between protons and neutrons
- Large nuclei tend to fall apart spontaneously
- · Such decay is called fission
- · Fission is a type of radioactivity

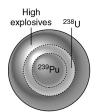

Induced Fission

- Large nuclei can break when struck
 - Collision knocks nucleons out of stable equilibrium
 - Hard collisions are best at inducing fission
 - Neutrons make ideal projectiles for inducing fission

Chain Reaction

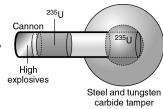
- · Neutrons can induce fission
- Induced fission releases neutrons
- This cycle can repeat
 - Chain reaction!
- · Each fission releases energy
 - Many fissions release prodigious amounts of energy
 - Sudden energy release produces immense explosion

Requirement for a Bomb


- 1. Initial neutron source
- 2. Fissionable material (allowing induced fission)
- 3. Fissions must release additional neutrons
- 4. Material must use fissions efficiently (critical mass)

Fissionable Materials

- ²³⁵U and ²³⁹Pu are fissionable materials
- ²³⁵U is rare and must be separated from ²³⁸U
- ²³⁹Pu is made by exposing ²³⁸U to neutrons


Gadget & Fat Man

- ²³⁹Pu sphere below critical mass (6 kg)
- · Crushed by explosives to above critical mass
- Shell of ²³⁸U assisted implosion

Little Boy

- ²³⁵U hollow sphere below critical mass (60 kg)
- Cannon fired plug through sphere to exceed critical mass
- Tungsten-carbide shell contained explosion initially

Question:

Is it possible to have 100 tons of plutonium and not have it explode?