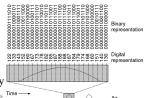
Optical Recording and Communications

Question:

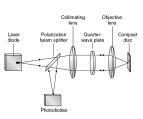

When you submerge a digital watch in water and tilt it just right, the watch's face appears to be a perfect mirror. Is the mirror reflection from the outer (front) surface of the watch face or from the inner (back) surface?

Review of Digital Representation

- · A physical quantity is measured
- The measured value is represented by several digits
 - Binary digits are most common
 - Binary digits have only two values: 0 and 1
- Each digit is represented by a physical quantity
- Discrete values of physical quantity represent a digit
- · Good noise-immunity and allows error correction

Digital Audio

- Represent air pressure fluctuations as current
- Measure current many times per second
- Convert current measurements to binary
- Use these binary values to represent sound



Optical Recording

- · Media types:
 - Compact Disc (CD)
 - Laser Disc
 - Digital Video/Versatile Disc (DVD)
- · Reading technique:
 - Reflect laser light from optical surface
 - Measure reflected intensity to obtain information

Playback Techniques

- Laser light is focused on disc aluminum layer
- Reflection is weaker from ridge than flat
- Reflected light is directed to photodiodes
- Light intensity indicates ridges or flats

Playback Issues

- · Light must hit ridges perfectly
 - Feedback optimizes position of light spot
- · Light must hit only one ridge
 - Use laser light
 - Focuses laser to diffraction limit
 - Feedback focuses laser on layer
- Ridge must be large enough to detect
 - Ridge can't be much smaller than light wavelength

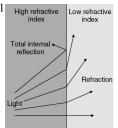
Advantages of Digital Recording

- Freedom from noise and media damage problems
 - Digital representation avoids information loss
 - Error correction ensures clean transfer of information
 - Surface contamination doesn't matter (much)
- High information density
 - Optical density greatly exceeds mechanical density
 - Data compression is possible
- · Perfect, loss-less copies are possible

Optical Communication

- Light transfers info from source to destination
- · Both analog and digital representations possible
 - Analog is used to monitor some processes remotely
 - Digital is the dominant representation
 - Noise immunity and error correction
 - Compression
 - Sharing a single communication channel is common

Transmission Techniques

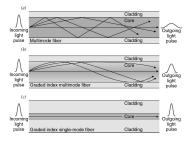

- · Basic Concept
 - Light source intensity encodes information
 - Light sensor detects and decodes information
- · Direct line-of-sight
 - Infrared remote controls
 - Infrared computer links
- Fiber transmission systems
 - Optical cables and networks

Components

- · Transmitters
 - Incandescent lamps (poor performance)
 - Light Emitting Diodes (adequate performance)
 - Laser Diodes (high performance)
- · Receivers
 - Photoresistive cells (poor performance)
 - Photodiodes (high performance)
- · Conduits
 - Optical Fibers (ranging from poor to high performance)

Total Internal Reflection

- As light goes into material with a lower index of refraction, it bends away from the perpendicular
- When the bend exceeds 90 degrees, the light reflects instead
- The reflection is perfect total internal reflection


Question:

When you submerge a digital watch in water and tilt it just right, the watch's face appears to be a perfect mirror. Is the mirror reflection from the outer (front) surface of the watch face or from the inner (back) surface?

Optical Fibers

- An optical fiber consists of a high-index glass core in a low-index glass sheath
- When light tries to leave the high-index core at a shallow angle, it experiences total internal reflection
- Light bounces endlessly through the core and emerges from the end of the fiber
- If the glass is pure and perfect enough, the light may travel for many kilometers through the fiber

Optical Fiber Types

Communication Issues

- · Light must remain together during passage
 - Dispersion and path differences are bad
 - Use laser light (monochromatic)
 - Use low-dispersion glass at its best wavelength
 - $-\ Use\ narrow\ (single-mode)\ fiber$
- Light attenuates during the trip
 - Use low-loss glass
 - Amplify the light periodically
 - Use fiber laser amplifiers

Advantages of Digital Comm

- · Freedom from noise
 - Digital representation avoids information loss
 - Error correction ensures clean transfer of information
- · High information density
 - Optical density greatly exceeds electronic density
 - Data compression is possible