Ramps

Question:

Can a ball ever push downward on a table with a force greater than the ball's weight?

Observations About Ramps

- Lifting an object straight up is often difficult
- Pushing the object up a ramp is usually easier
- The ease depends on the ramp's steepness
- Shallow ramps require only gentle pushes
- You seem to get something for nothing
- How does distance figure in to the picture?

Type of Force

- Support force
 - Prevents something from penetrating a surface
 - Points directly away from that surface

Physics Concept

- Net Force
 - The sum of all forces on an object.
 - Determines object's acceleration.

Newton's Third Law

For every force that one object exerts on a second object, there is an equal but oppositely directed force that the second object exerts on the first object.

Experiment:

If you push on a friend who is moving away from you, how will the force you exert on your friend compare to the force your friend exerts on you?

- 1. You push harder
- 2. Your friend pushes harder
- 3. The forces are equal in magnitude

Forces Present:

- 1. On ball due to gravity (its weight)
- 2. On ball due to support from table
- 3. On table due to support from ball

All three forces have the same magnitude for the stationary ball

Forces Present:

- 1. On ball due to gravity (its weight)
- 2. On ball due to support from table
- 3. On table due to support from ball

Forces Present:

- 1. On earth due to gravity from the ball
- 2. On ball due to gravity from the earth
- 3. On ball due to support from table
- Pair 4. On table due to support from ball
- Since the ball doesn't accelerate, 2 and 3 must cancel perfectly

Question:

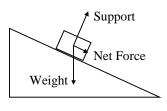
Can a ball ever push downward on a table with a force greater than the ball's weight?

Two Crucial Notes:

- While the forces two objects exert on one another must be equal and opposite, the net force on each object can be anything.
- Each force within an equal-but-opposite pair is exerted on a different object, so they don't cancel directly.

Physical Quantities

- Energy
 - A conserved quantity
 - The capacity to do work
- Work
 - The mechanical means of transferring energy.
 - work = force \cdot distance


(where force and distance are in the same direction)

Work Lifting Ball

- Going straight up:
 - Force is large
 - Distance is small

 $\mathbf{work} = force \cdot \mathbf{distance}$

Forces on a Ramp

Work Lifting Ball

- Going up ramp:
 - Force is small
 - Distance is large

 $work = force \cdot distance$

Work Lifting Ball

• Going straight up:

$$work = force \cdot \mathit{distance}$$

• Going up ramp:

$$\mathbf{work} = \mathbf{force} \cdot distance$$

• The work is the same, either way!

Physics Concept

- Mechanical Advantage
 - Doing the same amount of work
 - Redistributing force and distance