

ABSTRACT

Title of Document: HOW ELECTRICAL ENGINEERING

STUDENTS DESIGN COMPUTER
PROGRAMS

 Brian Adam Danielak, Doctor of Philosophy,

2014

Directed By: Associate Professor Andrew Elby, Department

of Teaching, Learning, Policy, and Leadership

When professional programmers begin designing programs, we know they often
spend time away from a computer, using tools such as pens, paper, and whiteboards
as they discuss and plan their designs (Petre, van der Hoek, & Baker, 2010). But,
we’re only beginning to analyze and understand the complexity of what happens
during such early-stage design work. And, our accounts are almost exclusively about
what professionals do. For all we’ve begun to understand about what happens in
early-stage software design, we rarely apply the same research questions and methods
to students’ early-stage design work. This dissertation tries to redress that imbalance.
I present two case studies — derived from my 10 study participants — of electrical
engineering (EE) students designing computer programs in a second-semester
computer programming course.
 In study 1, I show how analyzing a student’s code snapshot history and
conducting clinical interviews tells us far more about her design trajectory than either
method could alone. From that combined data I argue students’ overall software
designs can be consequentially shaped by factors — such as students’ stances toward
trusting their code or believing a current problem is a new instance of an old one —
that existing code snapshot research is poorly equipped to explain. Rather,
explanations that add non-conceptual constructs including affective state and
epistemological stance can offer a more complete and satisfactory account of
students’ design activities.
 In study 2, I argue computer science and engineering education should move
beyond conceptual-knowledge and concept deficit explanations of students’
difficulties (and capabilities) in programming. I show that in doing design students
do, say, write, and gesture things that:

• Are outside the phenomenological scope of most (mis)conceptions accounts
of programming

• Would be explained differently under frameworks that emphasize manifold
epistemological resources. Some student difficulties can be recast as
epistemological blocks in activity rather than conceptual knowledge deficits.
Similarly, some students’ productive capacities can be understood as
epistemologically-related stances toward an activity, rather than evidencing
particular knowledge of specific computational concepts.

• Would suggest different instructional interventions if teachers attended to the
stabilizing aspects — such as epistemological dynamics — that help these
episodes of activity cohere for students.

HOW ELECTRICAL ENGINEERING STUDENTS DESIGN COMPUTER
PROGRAMS

By

Brian Adam Danielak

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Associate Professor Andrew Elby, Chair
Ayush Gupta
Edward F. Redish
James G. Greeno
William E. J. Doane
Benjamin B. Bederson

© Copyright by
Brian Adam Danielak

2014

 ii

Dedication
To my grandparents. Anna and Josef Danielak endured and survived so that I could
be here. Sabina Schwab loved me and made funny faces at me when no one else was
looking. Henry Schwab continues to teach me.

I also dedicate this to my brother, Jason. My name may be on the cover of this thing,
but without his support it wouldn’t exist.

I love you all.

 iii

Acknowledgements
 Once, in my high school Economics class, my teacher Mr. Mooney1 told us to
take out a sheet of paper. We were to spend 5 minutes writing down a list of all the
people who were responsible for getting us to school that day. I started off slowly.
Mom, for waking me up when my alarm clock didn’t. Me, for remembering to put gas
in the car.2 Then I thought about all the people who had maintained the car over the
years. I thought about the people who had designed the car, when it was just
modeling clay and blueprints, before a single piece of metal was bent into a fender.3
Soon I was writing down the people who made the antifreeze that kept the engine
cool, Charles Goodyear for developing vulcanization techniques that make modern
tires work, and the guy at Jiffy Lube who told me—and I think I’m quoting here—
”normal transmission fluid should be red, like fruit punch; your transmission fluid is
brown, like Thanksgiving gravy with metal shavings in it.”
 I was surprised—having filled the front of the sheet and most of the back—
when Mr. Mooney told us to stop. He said the point of the exercise was to show that
as a society we are interdependent. That interdependence is key to understanding the
very basics of economic theory: scarcity, pricing, trade, comparative advantage. But, I
was still stuck on how many people were on my list. Most of them were people I’d
never even met. It wasn’t that I didn’t care about economics; it was that for the first
time I realized in a big way how many people were responsible for where I was.
 I can’t exhaustively thank everyone who helped me make this. Moreover,
some people, having read its contents, might wish to dissociate themselves entirely
from it. To those who made this dissertation possible, I hope my thanks below will
suffice. To those I leave out, please don’t let my imperfections reflect on the job you
did. Lastly, to those who wanted no public record of having been associated with this,
I’m sorry.
 I would first like to thank my advisors, Andy Elby and Ayush Gupta. Nearly
six years ago I made the decision to leave my Ph.D. program, my school, and my city
behind to join Andy’s program. It wasn’t long until I was working with, joking with,
writing with, and being advised by Andy and Ayush. From Andy, I learned to be
clever, argue well, and always try to find the good, redeeming features of things.
From Ayush, I learned the importance of bringing empathy and compassion to my
work and my life. Any graduate student would be lucky to have just one of them as an
advisor. I struck gold with both.
 My thanks go also to my committee. Ben Bederson graciously welcomed me
into Maryland’s human-computer interaction lab, all the while offering grounded and
focused feedback on my work. Joe Redish has been an upbeat supporter of—and at
times loyal opposition to—my research. My thoughts and insights have only grown
stronger with his contributions. Jim Greeno has seen my intellectual development
from the beginning. It is not an exaggeration to say parts of this dissertation were
forged in the crucible of DC rush hour as I tried to navigate traffic and answer his

1 That’s not a pseudonym.
2 Yes, I counted myself.
3 Or, for that matter, re-bent when mom hit a lightpost in a parking lot.

 iv

questions about my research. I thank him for entrusting me with his vehicular safety. I
thank him as well because at a dinner in June of 2011 he restored my faith that some
people get into academia to try and do good. Finally, Wil Doane helped get me into
this crazy mess in the first place. In addition to being a mentor in computer science,
Wil has been an unflinching champion of my ideas for as long as we’ve known each
other. He first showed me what passion and innovation can look like in a computer
science classroom; I hope this dissertation is a natural extension of those ideals.4
 I’d like to thank my compatriots in the Physics Education Research Group
(PERG) at Maryland. Jessica Watkins, Chandra Turpen, Vashti Sawtelle, and Julia
(Svoboda) Gouvea were model post-docs and amazing listeners. I look up to all of
them, which at least Julia has confirmed makes her uncomfortable. Tiffany Sikorski
has always been impressed with my work, which means so much to me because I
think she’s a very hard person to impress. Lama Jaber was a constant source of
warmth, compassion, and joy. I was very sad to see her leave for Boston, but I’m so
honored to have her as a friend. Ben Dreyfus offered a sympathetic ear and ongoing
encouragement when I got stuck thinking about students thinking about
programming. Luke Conlin was my stalwart conference roommate, intellectual
companion, cheerleader from afar, and fellow pillow fort architect. Gina Quan taught
me how to hug; her non-hug-related work teaching girls to program Arduino robots
has me endlessly excited. And, thanks to PERG’s impressive alumni network,
Rosemary Russ helped me think through some tough data analysis once I got to
Madison.
 Eric Kuo and Mike Hull were my teammates in making sense of engineering
students making sense of mathematics. Without Eric and Mike taping, analyzing, and
dissecting classroom video my work couldn’t exist. Eric in particular endured a
roundtrip car ride from Boston to Bar Harbor in which I panicked about everything I
didn’t understand about our research.5
 Jen Richards, Colleen Gillespie, and Jason Yip have been with me in Science
Ed since the beginning. It was a painful change when we stopped taking the same
courses, changed advisors, and changed geographies. But, we gave writing feedback
to each other, supplied references to each other, and kept each other in good humor
when things got hard. I’d like to single out Colleen for being the first one of us to
prove this whole dissertation thing was possible. And, I’d like to single out Jen for
watching over me and watching out for me. When Jen noticed I was struggling, she
talked to me about it — a simple act that got me into engineering education research
and led to all of this. In so many ways, I wouldn’t be here without her.
 It may buck tradition, but I’d also like to thank my undergraduate mentors
who have been with me for almost a decade. Robert Daly first convinced me to come
to the University at Buffalo. He later, to my delight, became my mentor in English
and agreed to supervise my undergraduate thesis. It turned out the ideas in that
thesis—while poorly argued and barely cogent—would form the basis of my
intellectual life for the past six years.6 Josephine Capuana backed me from the

4 And if it’s not, I hope you’ll forgive me.
5 I still panic about it. I’m just older now.
6 I know. I was surprised too.

 v

beginning. As my advisor she supported me no matter what I wanted to do and how
many majors I cycled through to do it. She is also the reason I met my second
undergraduate mentor, Kenneth Takeuchi. Dr. Takeuchi has backed me, time and
time again, since I was a freshman in college. He and Amy Marschilok taught me
about mentoring, inspired me to become an academic, and continue to serve as
models for what it means to care about students.
 I’d like to thank the friends who have been there to prop me up and help me
think. The first group is so big it gets its own paragraph. Robert Davis and Anne
Davis welcomed me into their home and their family where everyone seemed to me
to be strangely excited by what I was working on. Will Davis and Jamie Davis gave C
help when I needed it. Russ Davis inspires me with his dedication to serving the
country. Nora Deram and Mat Deram, in addition to being improbably lovely people,
are both helping to build the future of mathematics. Travis Pond took me to the
hallowed ground of the Apollo 1 launchpad so I could witness the engineering marvel
of putting a rocket into space. And Nan Pond has been my friend, bandmate, fellow
drum major, R convert, transatlantic pen pal, and support system for nearly 15 years.
Here’s to uncountably infinitely many more.
 Al Stein took me to lunch and reminded me that I’ve been boldly taking
chances with my writing since I was in tenth grade. Vanessa Svihla has been my
colleague, co-author, and co-conspirator in embracing the importance of design in our
work. Jae Vick, Cheryl Medley, Danielle Champney, and Christie Veitch constantly
affirmed I could do this, despite my doubts. Heidi Thalman and Adam Lloyd
reminded me I am awesome, despite my stern objections to the contrary. And, a
ragtag group of Physics Education and Science Education Researchers have been
there for me electronically: Warren Christensen, Eleanor Close, Hunter Close, Dedra
Demaree, Matty Lau, Sissi Li, Michael Loverude, Sandy Martinuk, Sam McKagan,
Rachel Scherr, and Michael Wittmann. I’d especially like to thank Rachel Scherr,
Hunter Close, and Michael Wittmann for being so welcoming to me at ICLS 2010.
 The people dearest to me get the last word. Mom, thank you for having me.
Thank you for raising me. Thank you for loving me. Thank you for doing all of that
when it wasn’t easy. Also, thank you for that time I called you at 4 am when I was
sick.
 Dad, thank you for loving me. Thank you for supporting me. Thank you for
that time I climbed the tree in our driveway and didn’t know how to get back down,
so you helped me. And thank you for teaching me how to ride my bike. You might
not know it, but almost everything I think about when I think about teaching traces
back to that.
 Jason, I already dedicated this to you. Stop looking for more credit. It’s
unbecoming.
 And, guys: this is it. This is my Science Book.

 vi

Table of Contents
Dedication ... ii
Acknowledgements .. iii
Table of Contents ... vi
List of Tables .. 1
List of Figures ... 2
1 Introduction ... 1
2 Study 1 – Retrospectively analyzing the design of a student’s project 9

2.1 Abstract .. 9
2.2 Introduction .. 9

2.2.1 Studying the software design practices of experts 9
2.2.2 The missing attention to students’ design thinking 12
2.2.3 The current state of research on students’ code snapshots 14

2.3 Context and Methods ... 16
2.3.1 Context of the study .. 16
2.3.2 Methods... 17

2.4 Code Snapshot Data and Analysis ... 18
2.4.1 Rebecca’s file-scanning solution is computationally complex 18
2.4.2 Rebecca’s file-scanning solution ignores an assignment directive 20
2.4.3 Rebecca repeats the same chunk of code seven times 21

2.5 Interview Data and Analysis .. 23
2.5.1 Rebecca employed fscanf loops because she was deliberately reusing
from an Basic Programming Assignment. .. 23
2.5.2 Rebecca repeated code because she wanted to re-use functionality she
could trust .. 26

2.6 Discussion .. 27
2.6.1 Rebecca’s key design decisions are made early, persist through to her
final submission, and carry consequences .. 28
2.6.2 Her design decisions may be influenced by framing and overzealous
transfer .. 29

2.7 Conclusion ... 30
3 Study 2 – What directs and sustains students’ in-the-moment programming
activity? ... 32

3.1 Introduction .. 32
3.2 Literature Review ... 33

3.2.1 Computing culture should support a diversity of ways of knowing 33
3.2.2 Misconceptions research in computing education tends to ignore
students’ productive knowledge ... 36
3.2.3 Not all cognitive programming bugs imply a problem with the student 41
3.2.4 Examples motivate the need for contextual-sensitivity in modeling
programming cognition ... 43
3.2.5 Manifold models of cognition explain context-dependence and the
growth of expertise ... 48

3.3 Methods and Theoretical Commitments .. 50
3.3.1 Student population, course background, and selection 50

 vii

3.3.2 Studying design as a complex phenomenon of disciplinary practice 51
3.3.3 Deploying methods to capture the complexity of early-stage design work
 52
3.3.4 Developing a revelatory case of students’ early-stage design work 54

3.4 Lionel’s approach to design and to programming ... 55
3.4.1 While modifying a bike Lionel decomposed tasks, explained solutions to
himself, and created intermediate design representations 55
3.4.2 Lionel’s approach to programming resonates strongly with the design
stance he held when working on his bike ... 59
3.4.3 Gestural, inscriptional, and verbal in-interview evidence reveals Lionel’s
resources for structuring a program .. 61
3.4.4 We can trace continuities in Lionel across different kinds of design
activities .. 72

3.5 Rebecca’s approach to programming ... 73
3.5.1 Rebecca’s struggles on the iTunes project make sense in light of some
prior programming experiences she had ... 74
3.5.2 Rebecca has productive capacities for making progress on software
design work ... 85

3.6 Conclusion ... 102
3.6.1 Students’ early-stage design activity reveals patterns outside the
explanatory scope of (mis)conceptions accounts .. 102
3.6.2 For a subset of phenomena we can recast students’ productive capacities
and their difficulties in terms of dynamic epistemological stances Error!
Bookmark not defined.
3.6.3 Dynamic epistemological models can offer a lens for reforming
assessment and instruction. ... 105

4 Conclusion .. 109
4.1 Students displayed a diversity of approaches to programming in the moment
 105

4.1.1 Isaac used a thoughtful debugging strategy that code snapshots alone
could never capture ... 105
4.1.2 Dana created her own debugging environment 106
4.1.3 Toby said recursion was the “hardest programming way to think” 106

4.2 We should think carefully about what students’ programming design
knowledge means for assessment ... 109
4.3 Final Remarks .. 112

5 References ... 114
6 Appendix 1 – Transcript conventions ... 123
7 Appendix 2 – Visual conventions for gestures ... 124
8 Appendix 3 – Transcript of Rebecca’s pseudo-code episode without gesture codes
 125
9 Appendix 4 – Conceptual knowledge frameworks in computing don’t tell us much
about how Lionel structured an in-interview program ... 127

9.1 Analyzing Lionel’s Solution From a Conceptual Knowledge View 127
10 Appendix 5 – Neverly-Asked Questions (NAQs) .. 129

 viii

10.1.1 Neverly Asked Questions (NAQs) about my conceptual analysis of
Lionel’s code ... 129
10.1.2 Neverly-asked questions about Lionel’s verbal pseudo-code description
 130

 1

List of Tables
Table 1 – An overview of my study participants and the types of data I collected 7
Table 2 – Five different interpretations of semantically-equivalent programming

statements in the same language ... 44
Table 3 – Three syntactically-similar statements with very different semantics 46
Table 4 – Using room lighting configurations to think about epistemological framing ... 49
Table 5 – Comparing Lionel’s words and actions across different stages of

“programming” over the same putative section of his program. I have bolded some
language-specific syntax. .. 70

Table 6 – Comparing Lionel’s design activity across contexts .. 73
Table 7 - Rebecca describes an array of structures using gestures (Interview 4 of 5, April

6, 2012) ... 87
Table 8 – Rebecca says gets lost on the array of pointers pointing to track names

(Interview 4 of 5, April 6, 2012) ... 89
Table 9 – Rebecca starts talking out pseudo-code and asks for the pen to write it 95
Table 10 – Rebecca’s verbal/gestural overview of looping through the input track titles

(Interview 4 of 5, April 6, 2012) ... 97
Table 11 – Rebecca concludes her visual and gestural explanation for scanning in track

titles (Interview 4 of 5, April 6, 2012) .. 101
Table 12 – Comparing Lionel’s and Rebecca’s views toward pseudo-code 103

 2

List of Figures
Figure 3-1 – An comic-based overview of my methods for capturing students’ design

practices .. 54
Figure 3-2 – An overview of Lionel’s representational cascade and the features and

affordances of each representational layer. ... 62
Figure 3-3 – Lionel’s final source code for the range-finding prompt 64
Figure 3-4 – Lionel makes a cycloid/helix gesture as he says “parse through this array” 67
Figure 3-5 – Rebecca’s compilation activity over time for Project 2. Each compile a

student initiates creates a commit, so long as there has been a change to the
underlying code. The height of each bar maps to the number of commits recorded
that day. The red line charts cumulative commits over time. The red line is steepest
in periods of frequent activity and shallowest in periods with little or no compile
activity. .. 82

Figure 3-6 – The instructor required students to use this data arrangement for storing
information in the music server. The scheme uses an array of pointers to represent
the track names of an album. .. 86

Figure 3-7 – I write down what I understand as Rebecca explains the overall data
structure of albums to me .. 88

Figure 3-8 – The candidate pseudo-code Rebecca dictated to me for declaring an array of
pointers .. 164

Figure 3-9 – Rebecca’s pseudo-code for scanning in and storing track names 95
Figure 9-1 – Highlighting the conceptual features of Lionel’s code given Elliott Tew’s

(2010) outline of CS 1 concepts .. 128

 1

1 Introduction
 Seymour Papert’s (1980) book Mindstorms has a curious section. Or at least I
thought so. The book collects years of Papert’s thoughts, observations, and experiments
with teaching children at school to program. The famous7 Turtle and LOGO — the
language spoken and understood by it — let students express geometrical ideas in the
form of procedures and debug procedures using the spatial affordances of geometry. My
school did not have LOGO, so I came to see the beauty of programming much, much
later in life. But, for many children in Papert’s studies, LOGO became a venue for
expression and creativity.
 The curious section in Mindstorms is one in which Papert describes “structured
programming,” a technique for breaking down large procedures into “mind-sized bites.”
In short, it’s possible to write lots of programs ahierarchically as a list of instructions:

FORWARD 50;
RIGHT 120;
FORWARD 50;
RIGHT 120;
FORWARD 50;
RIGHT 120;

This little program would make a LOGO turtle draw an equilateral triangle. By telling the
turtle how much to go forward (in distance), how much to turn (in degrees), and in which
direction to turn (in this case right), one can make a turtle trace out this equilateral
triangle as a sequence of steps.
 But, this program doesn’t have much structure. And, as the program grows —
say, to accommodate having the turtle draw a simple house — managing the program
becomes more complicated. It’s possible, in principle, to have dozens or hundreds of
simple little statements and it can become more and more difficult to figure out which
part of the program drew which part of the picture.
 So, I’ll propose a modification:

TO MAKEATRIANGLE:
 FORWARD 50;
 RIGHT 120;
 FORWARD 50;
 RIGHT 120;
 FORWARD 50;
 RIGHT 120;

What I’ve done is define a procedure in LOGO. In a way, the procedure bundles together
the list of discrete steps and offers a sense of structure to the program. The procedure is
now also something I can compose to make more complicated things. Now, for example,
I can draw a bunch of triangles that all share a vertex and make a kind of pinwheel:

7 Bearing in mind that “fame,” in the subfield that is computing education, is a relative
thing.

 2

MAKEATRIANGLE;
RIGHT 120;
MAKEATRIANGLE;
RIGHT 120;
MAKEATRIANGLE;
RIGHT 120;

 If I apply the same kind of thinking to the pinwheel that I did to the triangle, I
might do this:

TO MAKEAPINWHEEL:
 MAKEATRIANGLE;
 RIGHT 120;
 MAKEATRIANGLE;
 RIGHT 120;
 MAKEATRIANGLE;
 RIGHT 120;

Now imagine two students, both of whom are trying to get the turtle to draw a pinwheel.
Alan’s Code Ada’s Code

 3

The picture Alan’s turtle makes should be identical to the picture Ada’s turtle makes.8 So,
if all we care about is the final art, Alan and Ada are making the same thing. They’re
indistinguishable as students from the perspective of what the turtle draws on paper.
 But, clearly Alan’s code and Ada’s code aren’t the same. Ada’s program evinces
what Papert (1980) would call structured programming: pinwheels are composed of
triangles, while triangles are composed of straight line segments.9 Alan’s code doesn’t

8 Unless I screwed up, which is possible. If so, that’s my fault; don’t hold Alan and Ada
accountable.
9 Not to get pedantic on you, but yes, Ada could have written a program that was
perfectly syntactically valid — and produced the same picture — while choosing
different and possibly bogus procedure names. By renaming functions, for example, Ada
could have forced me to say that in her program “unicorns are composed of Cheetos, and
Cheetos are composed of dinosaur fingers.” And, while my restatement would make no

 4

compose things. Every line in Alan’s code is a direct instruction to the turtle and there is
no sense of hierarchy. Instead, there’s just a serial flow of instructions. To think more
about the differences between Alan and Ada, let’s go back to Papert.
 Papert (1980) discusses structured programming in the case of two children. One
child, Robert, embraced structured programming. Robert extolled the style: “see, all my
procedures are mind-sized bites” (Papert, 1980). And, indeed, programmers today are
given similar advice in books on professional programming practice (Martin, 2009). But,
Keith was a child who resisted. His programs remained ahierarchical; “featureless” in
Papert’s words. Debugging was harder for Keith, too, because it was harder to locate
problems in a program devoid of structure.
 If Keith was rather stubbornly sticking to his ahierarchical style, should a teacher
have proactively instructed Keith to change? Papert says no. Rather, as Keith
encountered troublesome errors debugging his code, he would meet with familiar advice:

When a child in this predicament asks what to do, it is usually sufficient to say:
“You know what to do!” And often the child will say, sometimes triumphantly,
some-times sheepishly: “I guess I should turn it into subprocedures?” The “right
way” was not imposed on Keith; the computer gave him enough flexibility and
power so that his exploration could be genuine and his own. (Papert, 1980)

But, largely, that’s where Papert leaves things. As Papert would have it, most children
will inevitably run into increasing frustration when they debug. When children hit those
problems, it’s up to the teacher to patiently remind the student that, in a sense, “we’ve
covered this.” After repeatedly hitting this wall most students will see the light —
eventually — and come to save themselves from frustration by adopting structured
programming.
 But what if they don’t?
 I knew from decades of research in science education that students do not always
adopt the practices we want them to. As Hammer (1994) essentially put it, not all novices
go on to develop expertise, and many cognitive formulations of the novice-expert
continuum didn’t (and still don’t) really explain why. Was structured programming
something more than a practice of keeping code tidy and easing debugging? Yes, I
believed so. Structured programming wasn’t the computer science equivalent of “always
labeling your units” in science10; it reflected a larger view on how we think about
procedure and a concomitant willingness to compose big complex ideas out of small
atomically-understandable ones (Abelson & Sussman, 1996; Papert, 1980).
 Back to Alan and Ada. With all this talk about structured programming, we’ve
mostly been focusing on code: how it’s structured differently and what affordances and

sense, neither LOGO nor the turtle would have a problem interpreting Ada’s procedure to
make what Ada would call a pinwheel. The dinosaur might have a problem, I guess.
10 Don’t misunderstand me; labeling units is important. The fact that early versions of
LOGO didn’t drives me nuts. But, if you asked a bunch of sophisticated chemists what
are the chief intellectual practices of their discipline, I don’t think “labeling units” will
top the list. If you ask Abelson & Sussman (1996) what the chief intellectual practice of
computer programming is, they’ll tell you it’s managing the complexity of large software
systems.

 5

drawbacks result from the design. We still don’t have a sense of how Alan and Ada
actually built their programs. We can’t know, just from these snippets, whether Ada’s
code started with a compositional structure. Perhaps Ada started just the way Alan did, so
there was some intermediate state of Ada’s code before she refactored it when it was just
as ahierarchical and featureless as Alan’s code. Or, perhaps Alan started by trying to
structure his program, but he ran into some errors. Maybe Alan’s literal code is the result
of a design retreat late in the game. It’s not that he doesn’t appreciate structured
programming; he just couldn’t get it to work and, feeling pressured to produce a proper
pinwheel, resorted to taking out the structure and leaving just concrete instructions for the
Turtle.
 I had questions.
 Would all students come to structured programming after banging their heads
enough against a buggy featureless program? Maybe. Would they do it on a timescale we
could see? I wasn’t sure. Was it possible students could get through one, or even multiple
semesters of programming without ever embracing structured programming for
themselves? Quite possibly. Outside of Papert’s schools, was it possible for research to
not only track but explain why some students used structured programming and other
students didn’t? Were there Alans and Adas out there in real life whose complex stories
could help us understand more about how students learn structured programming?
 This dissertation is my stab at beginning to answer those questions. The focus of
my study is a programming course for electrical engineering students. I chose that course
and population for two reasons. First and foremost, I had preliminary evidence suggesting
students were emerging from the course with wildly different mindsets about its
relationship to engineering and, by extension, design. One student, Larry, saw structured
programming as a natural extension of the way he tried to make sense of the physical
world. Another student dismissed the class entirely as “not even a real engineering
course.” Second, my connections to the school of engineering allowed me relatively easy
access to the class.
 Over two semesters I observed lectures and interviewed students. In interviews, I
was able to use video recordings, screen capture software, and an electronic pen to
capture what students said, gestured, typed, and wrote when they programmed. I later
augmented the study by tracking students’ code histories. I co-developed a simple
automated system to create version-controlled repositories of the multi-week projects
students worked on for the course. Each time a student compiled, our system captured a
snapshot of the entire codebase (called a “commit” in Git, the versioning system we
used). With each snapshot we also captured the input students passed to the compiler and
any compile-time messages (including errors and warnings) they would have seen.
 Table 1 shows a summary of all the participants in my studies and the kind of data
I collected.11 The solicitation process began at the beginning of each semester. During the
second class lecture I read a 3-minute IRB-approved speech explaining that I was
studying how students understand programming code. Students who expressed interest
were invited to participate in interviews, and for each interview they completed they were

11 The “Inscriptions” column is currently blank because I’ve been having trouble
accessing that portion of my dataset. I hope to resolve my technical difficulties so I can
provide inscription counts in later revisions of this dissertation.

 6

paid $15. Interviews were scheduled opportunistically based on when students were
available. In total, the data corpus comprises more than 20 hours of clinical interviews
and more than 2,500 distinct code snapshots. Of the 10 students who participated, I chose
to focus on Rebecca (who appears in both study 1 and study 2) and Lionel (who appears
in study 2).

 7

Table 1 – An overview of my research participants and the types of data I collected

Semester Participan
t

Interviews12 Screencaptures Inscriptions
13

Code
Snapshots

Fall 2011 Lionel 1 1 session —

 CJ 1 — —

 Donna 2 2 sessions —

 Sam 1 — —

 Toby 2 — —

 Will 1 1 session —

Spring 2012 Isaac 3 1 session 434
14

 Dana 3 2 sessions 878

 Natalie 4 1 session 262

 Rebecca 5 3 sessions 959

12 All interviews were videorecorded with the exception of Toby’s. Toby requested to be
audiorecorded only.
13 At present, technical difficulties prevent me from reporting an exact count of
inscriptions collected.
14 Due to an unidentified error in Isaac’s code snapshot history, we lack data between
February 21 and April 12. we know in aggregate what changed in his code between those
two dates; we just can’t resolve that aggregate change down into individual changes for
each time Isaac compiled between those dates.

 8

 This dissertation is structured into two studies that analyze data from the corpus.
Study 1 asks what we can learn if a student submits a program like Alan’s. In other
words, when one student’s final code submission is structured in peculiar ways (or not at
all), can research help us retrospectively recover the story of how that design came to be?
Study 2 in effect asks what directs and sustains Alan and Ada’s in-the-moment
programming activity. I analyze rich data — including talk, gestures, inscriptions, and
screen captures — of two real students. The analysis tries to understand what constitutes
the approaches they take when they code. Along the way, study 2 offers an illustration of
why strictly “conceptual” accounts of students may not be enough to explain certain
classes of phenomena in learning to program.

 9

2 Study 1 – Retrospectively analyzing the design of a
student’s project

2.1 Abstract
This paper focuses on a historically understudied area in computing education:
attending to students’ design thinking in university-level introductory programming
courses. We detail the case of Rebecca, a first-year Electrical Engineering student
taking a required 2nd-semester programming course in C. Our analysis focuses on two
related aspects of Rebecca’s code for a multi-week project:

1. The origin, nature, and evolution of unusual structural and behavioral features
of Rebecca’s code

2. The subtle, yet complex reasons that led Rebecca to make particular design
choices in her code

Our data comes from ethnographic observation of Rebecca’s class, fine-grained
compile-time snapshots of Rebecca’s codebase, and semistructured interviews with
Rebecca. We first present an analysis of the compile-time snapshots, detailing
Rebecca’s unusual use of file-scanning loops and her seven-fold repetition of a
particular code chunk (once for each day of the week). We then augment that analysis
with data from semi-structured interviews with Rebecca, which reveal that affect
(Eynde & Hannula, 2006; Hannula, Evans, Philippou, & Zan, 2004) and framing
(Hammer, Elby, Scherr, & Redish, 2005; van de Sande & Greeno, 2012) offer
substantial explanatory power for understanding why Rebecca made particular design
choices.

2.2 Introduction

2.2.1 Studying the software design practices of experts
In 2010, the journal Design Studies devoted an entire issue to studies of how
professional software engineers design complex systems. The journal featured five
different research perspectives on the same dataset: videos of three different
professional software engineering teams trying to design a traffic simulator. The
existence of the journal issue, and the investigations contained therein, were
motivated by what the issue’s editors saw as a growing need to know more about how
software design gets done in practice. In particular, the editors contended, fields of
design studies, interaction analysis, and human-computer interaction don’t know
enough about how software engineers use representations and collaborative
exchanges to organize the beginning phases of a design:

[d]uring formative design, software engineers spend a great deal of time
engaging in creative, exploratory design thinking using pen and paper or a
whiteboard—whether alone or in a small group. However, not enough is
known about how software designers work in such settings. What do
designers actually do during early software design? How do they
communicate? What sorts of drawings do they create? What kinds of

 10

strategies do they apply in exploring the vast space of possible designs? (Petre
et al., 2010, p. 533; my emphasis added)

 Research in that issue takes on a variety of challenges in the study of expert
software design practice. One challenge, for example, is that of understanding how
engineers process, prioritize, and cope with design requirements. Ball, Onarheim, and
Christensen (2010) observed that engineers deploy mixed strategies, developing
solutions breadth-first for easy problems and depth-first for more complex problems.
They also found that the more complex a requirement became, the more likely
engineers were to create speculative simulations (through talk and representations)
about how a system might work to solve that problem (Ball et al., 2010).
 Looking at design sessions longitudinally, Baker and van der Hoek (2010)
explored the shape and trajectory of how ideas generated in the design process
develop and relate to one another. Those researchers found that roughly a third of the
ideas discussed in a typical design session “were reiterations or rephrasings of
previously stated ideas” (Baker & van der Hoek, 2010, p. 604). While it is perhaps
frustrating that ideas would be repeated so much, the authors argue such repetition
can be viewed as a kind of continual revisitation to make sure a proposed design
coheres:

Rather than representing a failure on the part of the designers, this repetition
seems to be a necessary character of successful design sessions. Each time an
idea is resurrected it is placed them [sic] in a new context, and compared to
different aspects of the system. In this way, a concept of compatible, elegant
design ideas is slowly converged upon. (Baker & van der Hoek, 2010, p. 607)

 Perhaps most germane to the work presented herein, Jackson (2010) explores
the role of structure in software design. Jackson’s meaning in using the word
“structure” is broad. It can best be described as the arrangement of and relationships
between the elements of a system. But, the broadness is deliberate, because Jackson’s
overall argument is that the work of software often involves a coordination of
different structures, some of which drive the organization of others. In the case of
Jackson’s (2010) study, designers worked with various kinds of structured sets to
build software that could simulate traffic patterns in a city section. The work of
design then, in part, becomes that of defining and coordinating structural relationships
at various levels of abstraction:

• The system-to-be-modeled, in this case a system of roads and intersections on
which one can simulate traffic. Schematically, this system can be structured
on the Cartesian plane of a map. Its representation (a diagrammatic map-like
network of streets) works to organize how the system-to-be-modeled looks in
the real world.

• The actors present in the system-to-be-modeled. In this case, that means
abstracting from the map to all of the actors that simulator software would
need to send data to and get data from: including traffic signal units, traffic
signal controllers, drivers, and vehicle sensors.

 11

• The meta-entities that must exist to execute the actual simulation. Crucially,
these abstractions may not be the same as the actors in the system.15 In this
case, additional computational entities must be added to carry out a traffic
simulation, such as an arrivals model and a simulation clock (Jackson, 2010,
p. 559)

• The programming code that embodies the data and behaviors of the entities
and meta-entities. While to some degree aesthetic, the symbolic structure of
code is in many ways driven by decisions about structural relationships in
other levels of abstraction.

 How engineers develop and interact with even the first three kinds of
structural representations can profoundly influence the nature and quality of the code
they produce. As Jackson (2010) observes (in notable contrast to (Baker & van der
Hoek, 2010)), early negotiations of structure led to design decisions that were not
revisited later:

The traffic simulation problem was of a kind unfamiliar to all three design
teams. All three quite rightly tried immediately to assimilate the problem to
something they already knew. Two teams took the view that the problem was
an instance of the Model-View-Controller (MVC) software pattern; the third
identified the problem as ‘like a drawing program’. Unfortunately, these hasty
classifications were inadequate; but in every case they were accepted
uncritically and never explicitly questioned. (Jackson, 2010, p. 564)

 Ultimately, careful study of how software engineers design shows us the
enormous complexity involved in producing effective and thorough code. And, much
of that complexity is both afforded and constrained by talk, representational
infrastructure, and knowledge of larger-scale solution patterns. It’s striking, then, that
this research perspective on how programing design work gets done—for example,
the detailed ethnomethodological analysis by Rooksby and colleagues on how
engineers use a whiteboard (Rooksby & Ikeya, 2012; Rooksby, 2010)—seems largely
underrepresented in studies of how students learn to program. Instead, the latest
generation of research on student learning in programming has focused much more
extensively on questions like how can we assess and mitigate students’ difficulty in
programming? than it has on questions like how do students learn and display
evidence of design thinking in programming?

15 For example, suppose we were building an AI for chess. The “entities in the
system” are the pieces (rooks, queens, knights, etc.) and the actual board. But, those
pieces alone aren’t enough to create a chess AI. One must also create entities that
make decisions, move the pieces, maintain the state of the board, determine the
legality of moves, etc. Thus, bishops may be “entities in the system” that know how
to move (only along diagonals, up to 8 spaces). But, bishops need another meta-
system entity to tell them when and where to move. That distinction is important
because it means simulating chess involves much more than building a board and
pieces, even though the board and pieces may constitute the only outward-facing
aspects of a chess AI.

 12

2.2.2 The missing attention to students’ design thinking
 It’s difficult to point directly to the absence of a research direction regarding
how students design software. Rather, one can instead show that most computing
education research focuses elsewhere. In 2004, Valentine conducted a meta-analysis
of 20 years of conference papers at SIGCSE16. His analysis focused on papers
focused on first-year university courses, which as of 2004 comprised about 1/3 of the
total papers presented at SIGCSE. Valentine’s resulting taxonomy reveals how—in a
conference about computer science education—there is at best a minimal focus on
how students engage in design thinking. In the decade from 1994-2003:

• About 24% of conference papers were “Marco Polo” studies, which Valentine
(2004) describes as teacher- or administrator-centered accounts of describing
a new method, course, curriculum, or approach and documenting how well it
works.

• Another 42% of papers were classified as either “Nifty” or “Tools,” and
centered on either innovative assignments to give to students or software tools
to augment learning, instruction, and assessment.

• Only 22% of studies were classified as “Experimental,” a broad category
which includes everything from quasi-experimental comparisons of teaching
methods to ethnographic interviews with students solving protocol problems.

 Joy et al. (2009) offer a similar, more recent view of the state of computing
education research. Their 2009 survey included both conference papers and journals,
from which they constructed a taxonomy of over 3,500 papers in two overlapping
fields: “education in computer science” and “computers for education” (Joy et al.,
2009, p. 112). While Joy et al.’s (2009) classification scheme isn’t identical to that of
Valentine’s (2004), the most ready parallel to Valentine’s “Experimental” studies are
what Joy et al. call theoretical pedagogy:

The focus of the paper is principally educational, and reports results grounded
in education theory (i.e. explicitly references, discusses and applies pure
education theory). This category is used for “Learning Psychology” where the
“learning” is the predominant focus of theory, such as Bruner and Vygotsky.
(Joy et al., 2009, p. 114)

As a percentage of the pool of 3,500 papers, research classified as “theoretical
pedagogy” totaled less than 5%.17 Admittedly, the authors don’t disaggregate their
final results by “education in computer science” vs. “computers for education.” Still,
it seems reasonable to assume that if even half the publications were from “computers
for education” and none of that half focused on theoretical pedagogy, that still means
less than 10% of publications in education in computer science foreground learning as
a primary phenomenon.

16 SIGCSE, as used here, is the abbreviation for the annual meeting of the Association
for Computing Machinery (ACM) Special Interest Group for Computer Science
Education. SIGCSE is one of the premier venues for computer science education.
17 Joy et al. (2009) don’t report raw quantitative numbers, so I estimated this
percentage by measuring their data graphic on p. 117.

 13

 If one is looking for the kinds of studies that would involve deep, fine-grained
analysis of learning via students in action, the pool gets even thinner. In a survey of
79 papers from the International Computing Education Research Conference
(ICER)—published between 2003 and 2009—Malmi et al. (2010) found that of the
79% of papers that included any mention of a theoretical framework, 39% were
“surveys.” (p. 8). “Experimental” papers account for another 15% of papers that
explicitly identified a framework. The total number of papers that employed case
study methodology, ethnography, phenomenology, or phenomenology was 10, or
approximately 14% (Malmi et al., 2010, p. 8). But, since Malmi et al. (2010) do not
identify those case study/ethnography/phenomenology/phenomenograpy papers by
name, it’s difficult to assess just how closely those papers hew to their nominal
frameworks.
 Indeed, one of the most useful collections of research on the psychology of
how people design software isn’t recent; it’s almost thirty years old. In the 1980s,
Elliot Soloway, James Spohrer, and others were trying to establish what expert
programming behavior looked like (Adelson & Soloway, 1985; Soloway, 1986), and
what kept novice programmers from developing expertise (Bonar & Soloway, 1983,
1985; Mayer, 1981; Pea, Soloway, & Spohrer, 1987; Soloway & Spohrer, 1989). One
of the most fundamental arguments to emerge from Soloway and Spohrer’s work was
a refutation of the claim that novices make programming errors because they don’t
understand the elements of a programming language:

Our empirical study leads us to argue that (1) yes, a few bug types account for
a large percentage of program bugs, and (2) no, misconceptions about
language constructs do not seem to be as widespread or as troublesome as is
generally believed. Rather, many bugs arise as a result of plan composition
problems—difficulties in putting the “pieces” of a program together (see
sidebar)—and not as a result of construct-based problems, which are
misconceptions about language constructs. (Spohrer & Soloway, 1986, p. 401)

Ultimately, Spohrer and Soloway (1986) found strong support for two kinds of
problems that transcend any particular programming language:

Interpretation Problem: When novices read a programming assignment, they
do not always infer the correct interpretation from the specifications.

Composition Problem: Novices may not detect negative interactions between
sections of code that are locally correct, but globally incorrect. For example,
the code to perform the output may be correct, but in the wrong place in the
program. (Spohrer & Soloway, 1986, p. 191)

 Despite Spohrer and Soloway’s (1986) finding that program composition
accounts explain more than do language construct accounts of student error, research
since has persisted in documenting students’ “misconceptions” about programming
language constructs (Fleury, 1991, 1993, 2000; Herman, Kaczmarczyk, Loui, &
Zilles, 2008; Kaczmarczyk, Petrick, East, & Herman, 2010). Moreover, in a 2006
paper analyzing the programming behavior of hundreds of novices, Jadud argues that

 14

a focus on syntax-level analyses can help improve research and practice: “[b]y
identifying and understanding the behaviour of novices learning to program, we hope
to build up to later making sound cognitive and constructivist inquiries and
recommendations” (Jadud, 2006, p. 80).
 In the next section, I argue that a growing syntax- and language-focused trend
in computing education research is using bigger and richer datasets to push us farther
away from the kind of fine-grained studies that help us understand design thinking in
software creation. First, I explain how code-snapshotting systems help us capture
changes to students’ code over time. Then, I outline why—in their current usage—
such systems fail to help us consider larger design thinking issues that might be at
play for students. I conclude my introduction with a claim that we can use the same
code-snapshot repositories we’ve been mining for syntactical analyses to look for
deeper explanations of why students struggle with software design.

2.2.3 The current state of research on students’ code snapshots
A growing trend in computer science education research is the collection and analysis
of code snapshot data—records of the state of and changes to students’ code as they
develop it (Jadud, 2006; Rodrigo, Tabanao, Lahoz, & Jadud, 2009; Spacco, Pugh,
Ayewah, & Hovemeyer, 2006). Though specific implementations differ, the general
strategy in such projects is that a student event (typically compiling code or saving a
file) triggers a procedure that creates a record containing the entire content of all of a
student’s relevant files, as well as associated metadata (time of save/compilation, for
example, and any compiler errors that may have been generated). Mining data from
such snapshotting systems has led to large-scale documentation of common student
errors (Spacco, Pugh, et al., 2006), the development of compile-time detectors to
catch common student errors (Spacco, Strecker, Hovemeyer, & Pugh, 2005), and the
proposal of formative assessment models to predict student success (Jadud, 2006;
Tabanao, Rodrigo, & Jadud, 2011). Building on existing momentum, some
researchers are actively pushing for a continued scale-up of how we collect code
snapshot data. One current proposal even calls for creating an international database
by collecting snapshot data from thousands of introductory programming students
worldwide (Kölling & Utting, 2012).
 What’s common to these threads of research is how they mine the data. In
most applications of code snapshot18 research, the aim is to average across events and
sessions to arrive at a characteristic measure of a student’s behavior. Jadud (2006),
for example, develops the idea of a student’s “Error Quotient,” a measure of how
effectively a student addresses compile-time errors in their code.19 Rodrigo and

18 What I call “code snapshot” research may be more formally called “online
protocol” research (Jadud, 2006; Rodrigo, Tabanao, Lahoz, & Jadud, 2009; Tabanao,
Rodrigo, & Jadud, 2011). “Online” here isn’t mean to mean the sense of globally-
connected computers, but rather that student materials are collected in a minimally-
intrusive way while students work.
19 A useful way of thinking about Jadud’s (2006) error quotient is that the
computation believes in second chances. It doesn’t penalize students for making

 15

colleagues extend the idea of error quotient (Rodrigo et al., 2009) and introduce
similar measures such as students’ “compilation profiles” (Rodrigo et al., 2009),
“frustration profiles” (Rodrigo & Baker, 2009), and “error profiles” (Tabanao et al.,
2011). Because these measures can be collected in real-time as students code, they
offer the potential to identify at-risk students (Tabanao et al., 2011) and respond with
early interventions (Jadud, 2006).
 But, for all the data these methods collect their focus is primarily what Jadud
(2006) calls students’ “syntactic” struggles: the challenge of articulating well-formed
statements a compiler can properly parse. This focus on syntax-level struggles leads
to both a methodological and theoretical trade-off: we can see in detail how students
struggle with wording, but we see less of how they struggle with the meaning and
intent of their code. Syntactical analyses necessarily ignore the specific content of
students’ code because they abstract meta-information about the event: error type,
error location, frequency of error.
 As an analogy, suppose that instead of studying computer science students we
were studying screenwriting students. Further suppose we have a system to track data
whenever students save their screenplays and scripts. For each save, we get a copy of
the entire script at that time. We can also run an automated analysis to check whether
they’ve properly formatted slug lines20, put character names in all-capital letters,
properly numbered scenes, etc. We might even know where students are when they
write (coffee shop, library, home, etc.). If we mine that data, we could learn
something about students’ screenwriting behavior, but only at the level of how they
struggle with screenwriting syntax. Using only error-based data it’s much harder to
answer questions such as:

• How does this student construct a scene or handle dialog in their script?
• Does the student seem to have a grasp of pacing, story beats, and efficient

exposition?
• How does their writing manage and develop character arcs?

We also still can’t answer fundamental questions about the context of students’
writing processes:

• Do they use particular techniques to “break story” and decompose a narrative
into its key beats (index cards? Whiteboard?)

• Do they participate in a writing group?
• How do they respond to people giving them notes on revising a script?

 To sum up, because snapshot systems are designed to collect the totality of a
codebase at frequent intervals, they offer a rich record of data that captures the
results—both major and minor—of students’ design decisions. But, computing
education research that uses code-snapshotting has focused much more on detecting,
classifying, and predicting student errors than it has on showing how students
progress in programming and design expertise. Nevertheless, snapshot-based research
shows tremendous promise. Given that :

errors; it penalizes students if they don’t fix a given error before compiling the same
piece of code again.
20 In a screenplay, a slug line gives information about where and when a scene takes
place. For example: “INT. FORTRESS OF SOLITUDE – DAY.”

 16

1. Snapshotting students’ code represents a cutting-edge way to resolve the way
code—as a design artifact—evolves over time, but

2. Code snapshots, as they’re currently used, explore neither the totality of a
student’s design nor the rich context of that design’s production, and

3. There is a lack of parity between studies of how professionals design software
and studies of how students do so,

It seems sensible to ask: can code snapshots be used—possibly in synthesis with
ethnographically-oriented methods—to start studying how students’ design thinking
plays a role in their introductory programming work? We believe the answer is yes.
 In what follows, we present work that proceeds from an empirical challenge:
how can we develop accounts of students’ programming activity that explain the form
and evolution of their code on a design project? We offer an account of one student—
Rebecca—and her experiences and code from a second-semester course on
programming concepts for engineers. Using data from both code snapshots and
clinical interviews, we explicate both the challenges of studying students’ software
design processes and the potential for such study to inform accounts of teaching and
learning.

2.3 Context and Methods

2.3.1 Context of the study
The data presented in this case are taken from an ongoing IRB-approved study of
undergraduate electrical engineering majors undertaken at Flagship State, a large,
public research institution on the east coast. For two semesters, I have followed a total
of 10 students taking “Intermediate Programming Concepts for Engineers.” It is the
second of a required two-semester course sequence in programming.21 Students can
(and some do) place out of Basic Programming via AP Computer Science credit, but
all Electrical and Computer Engineering students must take Intermediate
Programming.
 Intermediate Programming has two 75-minute lectures per week and a weekly
discussion section led by an undergraduate Teaching Assistant (TA). Typical
enrollment is between 60 and 80 students per semester. Like Basic Programming,
Intermediate Programming is taught using the C programming language, and it
incorporates multi-week projects in C as part of its assessment structure. Students
must work individually on four projects over the course of the semester, which
together comprise 45% of their final course grade.
 Grading projects involves running students’ compiled code against automated
tests that determine whether a student program’s output matches the instructor’s
canonical output. If a student’s program completely matches the canonical output, the
student receives at least a 90% grade on a project. The remaining 10% are
discretionarily allocated “style” points, awarded for things like proper formatting,
code commenting, and functional decomposition (Field Notes).

21 Hereafter, I use “Intermediate Programming” to refer to the second course and
“Basic Programming” to refer to the first.

 17

 This study centers on “Flights Database,” the second of four projects assigned
to Intermediate Programming students during the spring 2012 semester. Students
were asked to build a text menu-based program that would let users query
information about airports and plan non-stop and one-stop flights between airports.
For this project, the instructor gave students three separate text files as source
material. The airports file contained names of airports and their three-letter
abbreviation codes; the routes file contained 3-tuples of two airport codes and the
route number of a flight flying between them; the flights file contained a list of
specific flight information (including arrival and departure times) by route number.
Crucially, in order to be able to respond to user queries students would need to build a
program that could coordinate information across all three files to return an answer.
 My analysis details the work of Rebecca, a female first-year electrical
engineering major. I focus specifically on Rebecca’s code for finding “one-stop”
flights, which the instructor defined as “all pairs of flights that route the user between
the departure and arrival airports with exactly 1 stop (i.e., a one-connection flight)”
(Flights Database handout, 2012). The one-stop problem is particularly challenging.
To solve it successfully students’ code must accept a user’s choice of airports and
day, then stitch together routes that involve two separate flights in a way that passes
stringent constraints for acceptable layover times.

2.3.2 Methods
 This study proceeds from an empirical challenge: how can we develop
accounts of students’ programming activity that explain the form and evolution of
their code on a design project? The focused form of that challenge for this study is
“how can we understand the unconventional design choices embedded in Rebecca’s
one-stop flight code?” To answer that question, my study draws from three data
streams: ethnographic observation, clinical interviewing, and code snapshot analysis.
 For two semesters, I ethnographically embedded myself in the same
instructor’s section of Intermediate Programming. My aim throughout was to see
what students see in terms of course material, assignment directives, and instruction.
In fall 2011 I observed approximately 50% of the course lectures. I also
independently completed all class homeworks and three out of the four course
projects to more fully understand the course’s assessments. In spring 2012 I
continued attending lectures, though less frequently, and began attending select TA-
led discussion sections. During both lectures and discussion sections I took field notes
while recording ambient audio using a LiveScribe Pulse pen.
 Rebecca was one of four students (three female, one male) willing and able to
participate in a series of 1-hour outside-of-class clinical interviews during the spring
2012 semester.22 I interviewed Rebecca five times, and in typical interviews I split

22In total, roughly 30 students responded to my initial in-class solicitation to be
contacted by email about my study. Of the students I emailed, approximately 8
students responded to my emails to schedule interview times. Of those 8, only four
students were able to successfully find interview time slots that fit our respective
schedules.

 18

time between asking about her experiences in the course and giving her time in the
interview to work on her project code. During each interview, I simultaneously used:

1. A Kodak Zi8 camera for video-recording our interactions
2. A LiveScribe Pulse pen to capture Rebecca’s on-paper penstrokes
3. A MacBook Pro (early 2011) with screen-recording software to capture

everything on-screen while Rebecca programmed
 The final component of data gathering is modeled after Jadud’s (2006) system
for capturing students’ code. My colleagues and I developed software, built around
the open-source version control system called Git, that effectively creates an entire
copy of a student’s code—what we call “snapshots”—every time students invoke the
compiler on their code. Our software then sends those snapshots to a secure,
researcher-accessible server in real-time as they’re created. Consequently, I could
plan each interview with Rebecca around up-to-the-minute knowledge of her work—
in some cases work she had completed just hours before the interview—and tailor my
interview questions to emerging patterns in her code. In total, Rebecca’s work
resulted in 958 compilation snapshots over the course of the semester.
 In what follows, I recount snapshot and interview data to explore the form and
history of certain features of Rebecca’s one-stop flight code. First, I simulate an
analysis of Rebecca’s code in the methodological vein of Jadud (2006) and others
(Rodrigo, Tabanao, et al., 2009; Tabanao et al., 2011), analyzing only Rebecca’s code
snapshots. In this first analysis, I focus on the form and evolution of particular design
features of Rebecca’s code. Then, I present a second, complementary analysis using
contextual data from my clinical interviews with Rebecca. In my second analysis I go
beyond the snapshots to highlight why, in Rebecca’s own words, she made those
particular design choices.

2.4 Code Snapshot Data and Analysis
 In this section, I simulate what data on Rebecca would look like using an
existing method of analysis described in Jadud (2006). Namely, I work at a level of
remove from Rebecca herself. I base my inferences only on her actual code, limiting
my interpretations about what she may have intended to do or designed her code to do
only to what’s supported in the snapshot-by-snapshot record of her code. Through
this “snapshot-only” analysis, I show that we can see in great detail how Rebecca’s
code embodies particular design features that diverge from how an expert might have
handled this design task. I restrict my analysis here to just two such features of
Rebecca’s code:

1. Rebecca’s use of repeated file-scanning loops to create a depth-first search
algorithm

2. Rebecca’s 7-fold duplication of code to handle checking for flights on each
day of the week

2.4.1 Rebecca’s file-scanning solution is computationally complex
 After declaring variables and opening the three provided text files (flights,
routes, and airports), Rebecca’s one-stop flight code enters a series of conditionally-
nested `fscanf()` commands. The purpose of `fscanf()` is to scan through the
characters of a file, most often one line at a time. The programmer can specify

 19

patterns of text to look for, e.g., “in each line, look for a word, followed by a space,
followed by two digits.” `fscanf()` also gives the programmer the flexibility to store
such matched patterns. “Once you find a word followed by two digits, store the word
in the following location in memory.” What’s interesting isn’t that Rebecca used
`fscanf()` to read through files like the list of airports. Any suitable solution would
need to read through those files. Rather, what’s interesting is how she uses `fscanf()`
in her design.
 Rebecca’s file-scanning logic never persistently stores the contents of the files
it reads in. Rather, her program reads through files one line at a time, and it
essentially can’t process or act on airport/flight information not in the line currently
being scanned. Instead, it’s been designed to copy single patterns temporarily, then
rewind the file back to the top and start reading in one-line-at-a-time again.
 What’s consequential about Rebecca’s design choice? Computationally, her
code has to repeatedly open multiple files and scan them one line at a time in order to
coordinate information. So, the task of finding a one-stop flight between two cities
becomes a series of repeated, one-line-at-a-time scans of external files:

1. Scan the airports file one line at a time to check the correctness of the
user’s input (line 20)

2. Scan the file of pairwise airport routes one line at a time (line 24)
3. To find possible connection cities, scan the routes file one line at a time

again (line 38)
4. If a route matches, scan the flights file one line at a time to verify whether

the time/day constraints are acceptable (one of the following lines
depending on the chosen day: 52, 79, 106, 134, 162, 190, 218).

Rebecca’s code is both visually and computationally complex. The multiply-nested
blocks can make it difficult for a human reader to follow the code flow, which may
have made it challenging for Rebecca to debug her own work. Moreover, nested for-
and while-loops increase the complexity space of a program—what computer
scientists call the big-O characterization of her algorithm. For every nesting of a scan
loop (there are 4 here) Rebecca increases by 1 the degree of a polynomial that
represents the execution time of her program. So, from a performance perspective,
Rebecca’s design suffers a trade-off in that with each invocation of a scanning loop,
we see a geometric increase in the time complexity of her program.23 In fairness to
Rebecca, the point I make here is not about her but about our mode of analysis. From
the perspective of a typical software engineer, Rebecca made a decision involving a
design trade-off. Still, inferring only from the code we cannot know whether her
decision was deliberate. We cannot know from code whether she knew or understood
the kind of complexity and performance trade-off she made, nor can we know how
she felt about the consequences of the decision. We know only that her final
submitted code contained the results of her decision to use nested scanning loops.

23

 20

2.4.2 Rebecca’s file-scanning solution ignores an assignment
directive

A second feature or Rebecca’s `fscanf()` design is that she ignores instructions in the
course assignment, which produces a solution that uses abstraction in a non-obvious
way. One design solution to the problem of creating a relational database—and one
seemingly dictated by the assignment—is to create three separate arrays in the
computer’s memory:

To parse the 3 airline flight database files, you will need to declare arrays that
will receive all the data. For the purposes of determining array sizes, you may
assume there will never be more than 100 airports in the “airports.txt” file,
500 route IDs in the “routes.txt” file, and 3000 flights in the “flights.txt” file.
(Flights Database class assignment, 2012)

Presumably, from the instructor’s directive, one “will need” to have an array of
airports (mapping 3-letter code to full airport name), an array of routes (mapping a
pair of airports to a unique routing number), and an array of flights (mapping unique
flight numbers to a collection of information about that flight).
 Rebecca creates no arrays. Instead, her code attempts to accomplish the same
task that a memory-persistent data structure would, only without the persistence. A
consequence of Rebecca’s approach is that she has no easy way to refer to arbitrary
airports, routes, or flights in her code, since her program has no mechanism to store
such information persistently. A second consequence is that since she avoids
persistent data structures, the complex work her program does to read through each
line of each file, in some cases multiple times (above) is repeated every single time a
user initiates a query.
 Given Rebecca’s particular design pattern, we asked the question of whether
she may have tried creating arrays before ultimately settling on her scanning-loop
solution. The answer, as far as we can tell, is no. We analyzed the history of both
Rebecca’s main() method and her one-stop flight code module. Our search revealed
that no snapshots exist in which Rebecca created arrays—either through dynamically
allocating them (through heap memory), or, as the assignment recommended, creating
overprovisioned fixed-size arrays on the stack. In other words, at the limit of
resolution of our data collection, and within the scope of the code Rebecca typed, she
never tried an array solution.24
 Curiously, we have evidence outside of Rebecca’s code that suggests she
knew, and even perhaps had seen, an array-based design solution. In a file called
“notes.txt” contained in her project directory, we see the following lines:

think about using: sscanf, array of pointers

his header file!!!

24 If Rebecca had tried an array solution and compiled—whether error-free or not—
our automated snapshot collection system would have captured it.

 21

-max line lenght: 2000
-max string lenght: 100
-defined true and false
-max airports: 100
-max routes: 500
-max flights: 3000
-min connect time: 60.0
-max connect time: 120
-daily maxk: 254 ???
-char airports[max airports][4]
-char aiport_cities[max airports][max string lenght]
-he has 3D array for routes.... char routes[max routes][2][4]
(notes.txt file, created March 19, 2012)

The context of the file is not entirely apparent, because we did not observe lecture on
March 19, the day the notes.txt file entered Rebecca’s snapshot history. Also, whether
“his” refers to the instructor or perhaps another classmate is unclear. —What seems
clear, however, is that Rebecca was responding to items she had seen in someone
else’s header file. Consequently, putting together the notes.txt file with Rebecca’s
final code submission reveals Rebecca was exposed to a design solution involving
arrays, but never implemented it in her code. Thus, a lingering and consequential
question remains unanswered: why did Rebecca adopt a solution that defied the
directions of the assignment, especially when she’d seen part of a potential design
solution that did use arrays?
 We return to this question in a later section, but first we turn our attention to
another unusual feature of Rebecca’s work: seven-fold repetition of code.

2.4.3 Rebecca repeats the same chunk of code seven times
 A second key feature of Rebecca’s code is the almost identical repetition of a
single 23-line code chunk seven times (lines 50–240). Because users can run queries
by choosing a day to fly (and some flights only run on certain days), students’ code
must be able to handle each of the seven possible days for when a user would want to
fly. In principle, Rebecca’s code achieves just that.25 In practice, her code creates
seven different conditional branches—one branch for each day of the week—where
the code within each branch is duplicated.

25 I say “in principle” because Rebecca’s code would not compile on my machine. So,
in practice, her design contains compile-time errors (and possibly run-time errors).
Nevertheless, her code provides ample evidence that she was attempting conditional
logic to handle each possible day.

 22

 Figure 2-1 represents a side-by-side delta-comparison of two such day-

specific branches of code. Lines 158–184 of Rebecca’s original code are on the left;

lines 214–241 are on the right, and in the figure lines have been renumbered (from 1)
to ease comparison. In this delta view, lines that differ are highlighted in pale red, and
characters that differ are shown in bold red.
 The two code blocks demonstrate just how much code is duplicated for
handling user input based on days of the week. Between these two chunks there are
only three differences (lines 1, 3, and 11): all of the references to day are changed
from 5 (on the left) to 7 (on the right).26 Moreover, the changes from block to block
are patternistic and predictable: the first line of the block is a non-functioning
comment, the third line of each block just checks whether the rest of the block should
run, while the eleventh line of each block compares an array entry to the day of
interest. Everything else is duplicate boilerplate that is essentially repeated 7 times;
once for each day of the week. I say “essentially repeated” because, as we’ll now
explore, there are minute differences between some of the code chunk’s seven
incarnations.
 Repeating code as Rebecca has done can be problematic because each
repetition multiplies the number of places she has to examine and modify if she wants
to introduce a systematic change. If, for example, Rebecca wanted to change the
internal names she gives to scanned-in variables, she has to make that change in

26 In the text-input files students were given, days of the week were represented as
integers (rather than the perhaps more familiar “Tuesday,” “Wednesday,” etc.).

e 2-1 – A side-by-side comparison of two blocks of Rebecca's flight-scanning code

 23

seven different blocks of code: once for each of the seven days of the week she’s
hard-coded. And, since any given change may inadvertently introduce an error,
increasing the number of places she repeats code also makes the code that much more
vulnerable to inconsistently-applied changes.
 Indeed, a repeated, inconsistently-applied scan pattern change seems to be
exactly what occurred in Rebecca’s code history. Between 10:04pm and 10:37pm on
March 26, Rebecca introduced a large set of changes to the one-stop flight module.
Among those changes Rebecca added the `d_letter` file-scanning-parameter to what
would become line 218, but not to what would become line 190. We can reasonably
infer Rebecca added this parameter as a way of capturing the “am” or “pm” specifier
given the input file’s format. Moreover, we can verify through Git that once
introduced, Rebecca’s omission of the parameter was never modified or corrected.
The problem percolated through to her final submitted code.

2.5 Interview Data and Analysis
In the previous section, I described two unusual features of Rebecca’s code for
searching one-stop flights:

 Her use of multiply nested loops that scan through source information files
without storing the information in those files persistently in long-term memory

 The code for handling a user’s chosen day, which was essentially the same
block of code copied and pasted 7 times

In this section, I offer explanations of Rebecca’s design choices by interpreting data
from over five hours of clinical interviews I conducted with her. I draw from those
interviews to explain how design decisions that might seem unusual to an expert in
fact grew rather unproblematically (for Rebecca) as ways of deliberately transferring
prior knowledge and designs (which explains feature 1) or coping with a constraint to
produce a reliable solution she could trust (which explains feature 2).

2.5.1 Rebecca employed fscanf loops because she was
deliberately reusing from an Basic Programming
Assignment.

Rebecca’s choices become easier to understand when you consider what she said in
the interview. When Rebecca initially saw the flights database project, her first
reaction was “this is just a lot like our fantasy football project that we did last year”
(Interview, March 16, 2012).27 But, the previous fantasy football project was easier
because all of the information she needed was in one file. Flights database, by
comparison, fractured necessary information across multiple input files.
 Since Rebecca said the fantasy football project was like an easier version of
flights database, I asked whether she tried making this project more like the easier
one. Her response was an emphatic “Oh yeah! Definitely!” (Interview, March 16,
2012). She said “as soon as we got this project I was like, ah! fantasy football! I’m
just gonna go and see how much code I can rework from that and like, use /mmhmm/
in this project” (Interview, March 16, 2012). Specifically, Rebecca went back to her
fantasy football code “and I was looking at how I scanned in the information from the

27 Transcript conventions are shown in Appendix 1.

 24

files, cuz, we haven’t really done anything like that this semester. Uh, scanning in
from files before—” (Interview, March 16, 2012). Since the fantasy football draft
project was the last in which she’d needed to do file-scanning, she “just, uh, went
back to check how I did that /mmhmm/ and then, if I could I copied, but because a lot
of the variables were different, uh, like these were more var—less, less variables, and
more strings than last year /mmhmm/ uh, I just retyped it out. I just looked at how it
was similar” (Interview, March 16, 2012).
 My first opportunity to discuss Rebecca’s one-stop flight work was on March
16, 2012, in what would be her third of five interviews that semester. This interview
was conducted very early into the time window for the Flight Database project, before
Rebecca had done the bulk of her coding. We were discussing her prospective design
plans. As Rebecca began explaining how the logic for a one-stop flight search was
supposed to work, she described what she saw as one of the central difficulties of the
project: the relevant information for answering user queries was spread across
multiple files (Interview, March 16, 2012).
 As Rebecca explained, something as simple as finding a flight from, say, JFK
to BWI “involves scanning through multiple files, because it’s not like one file that
has everything conveniently like, there” (Interview, March 16, 2012). When I asked
what would make things easier if, hypothetically, all the information she needed
were in one file, Rebecca responded by appealing to a previous assignment from last
semester. In Rebecca’s first-semester programming course (Basic Programming for
Engineers), one of several multi-week projects had students create a system for users
to conduct a fantasy football draft. The project involved, among other things, topics
related to basic file management in the C language, including how to read in a file
from disk (Interview, March 16, 2012). Rebecca explained:

Rebecca: Um, like, cuz when we first got this project, uh, I actually was
thinking “oh, well this is just a lot like our fantasy football project we did last
year.” /Huh/ We uh, had to scan in, uh, someone had to enter like “I wanna
pick a quarterback,” so then you had to scan in and go and look for all the
quarterbacks in the file and say “OK, this is the quarterback” and everything.
But, in that project we only had the one file that had everyone listed:
quarterbacks, runningbacks, wide receiver, in one file. And all the information
you needed there /Mmhmm/ So, you could just get it all and compare it all at
once with one scanf /mmm/ whereas this you have to, take, uh, you scan in the
flights, ah, the flights file. So, then you find the flight number. You have to
save the ID from that flight number, use that ID to scan into the routes file
/mmhmm/ and then save the routes information and then print it out with the
flights information. (Interview, March 16, 2012)

 Rebecca’s comments suggest she saw a coupling between the arrangement of
the input information and the structure (and complexity) of the computational logic
needed to process it. When one fantasy football file contained all of the relevant
information (player, position, team, etc.) it could be read in and processed one line at
a time. When information was fractured across files (pairs of airport codes in one file,
full spell-outs of airport names in another, for example), Rebecca felt she’d need to
use information shared across files (such as a route ID) to coordinate a scan across

 25

one file with a scan across another (and possibly an additional scan across a third file)
before she would have all the necessary information and computations to return a
result.
 I was interested in the connections Rebecca saw across projects, so I pressed
on. When I asked whether she thought about trying to make this project like her
fantasy football project, her answer was an emphatic “Oh yeah, definitely!” As she
elaborated:

Rebecca: That was like, as soon as we got this project I was like, ah! fantasy
football! I’m just gonna go and see how much code I can rework from that
and like, use /mmhmm/ in this project. And, my whole main file, like all those
NULL checks and everything, I mean they’re really simple to write, but I just
copied ‘em and put ‘em there, cuz, we had the same thing. /Mmhmm/ Um,
just changed, like, the names of the files.

As she explained, “reading in files” was a topic covered extensively in Basic
Programming—the first course of the sequence—but they hadn’t talked much about it
in this semester’s course.

Rebecca: Because [reading in from files] was a big [Basic Programming]
topic we hadn’t talked about it much. /Yup/ So, I just, uh, went back to check
how I did that /mmhmm/ and then, if I could I copied, but because a lot of the
variables were different, uh, like these were more var—less, less variables,
and more strings than last year /mmhmm/ uh, I just retyped it out. I just
looked at how it was similar. (Interview, March 16, 2012)

I started doing the scanning, and then I realized like, “I do not have all the
information I need in this one file,” so that’s when I realized I would have to
make the dummy variable to compare to the other file, so, which, there was no
other file in the, um, fantasy football one. So that’s when I realized, I was like
OK, so, there’s gonna be other stuff that I’m gonna have to do, and /mmhmm/
I mean, I can still kinda compare cuz it’s still scanning files /yup/, but the idea
of the dummy variable and all that, that would not have come from fantasy
football, so /sure/.

In sum, then, Rebecca’s repeated, nested scan loops were a structure she deliberately
borrowed from a previous semester’s project. By her telling, what seemed obvious
was that “scanning in from files” was a topic she’d already covered, which meant
she’d already developed a workable solution for how to solve that problem. Thus, she
saw the problem of how to coordinate airport information from different files as a
new instance of the old problem of reading information in from one file. Her flight
database work, accordingly, tried opportunistically adapting a previously working
solution to fit the current circumstances.

 26

2.5.2 Rebecca repeated code because she wanted to re-use
functionality she could trust

 By our interview on April 6, Rebecca had already completed and submitted
her code for the flights database project. When I looked at the final form of her code
for finding one-stop flights I noted an unusual pattern described in section 2.4.3
above: she had a code chunk repeated almost character-for-character 7 times. In the
interview, this section is what Rebecca referred to as “my obnoxiously long part of
my code” (Interview, April 6, 2012):

Rebecca: So, the way I did it was really long and probably, there was probably
like a much easier way, but I just did a giant if—if statements {swings cursor
from line 50 to line 63} If they wanted to fly on Monday /OK/ I went through
and checked to see if the route ID was the same {wiggles cursor across line
54}, and if it did, I went through to che—uh, I made a check_days function
{wiggles cursor across line 60} uh, I ended up commenting that out cuz I
didn’t end up /mmhmm/ finishing it. But, uh, my check_days function
worked, it just didn’t work completely with the code /OK/ (Interview, April 6,
2012)

As I scrolled the screen to look at each of the repeated blocks of code, Rebecca
elaborated:

Rebecca: And this is why my code, I feel like, is not uh, concise enough, or, I
don’t really, I forget the word they use, but uh /{inaudible}/ it’s very long
because I couldn’t figure out if I should do a while loop or whatever /Uh-huh/
But, so I was just like, I know this way should work if I get everything else
right, that uh, just go through, if input’s 1, if input’s 2 and just do the same
thing in each of ‘em just /Mmmhmm/ check for, “oh, if days is 2, if days is 1”
instead of, like—Cuz I probably could have done, like, maybe a giant while
loop, um, to try and, and if, while, inputs something, uh, then you check to see
whatever i is. But, I could, I didn’t—couldn’t figure out how that would work,
so I just did the same thing six times.

Interviewer: So, in, in each one of these it’s like, looks, and I’m not sure about
this, but it looks like the way you wrote it—so this {highlights line 79} is
pretty much the same in all of them, right? /Yes/

Interviewer: So’s this one {highlights line 81} /Yes/ this one {highlights line
83} Here’s where it’s different {highlights line 85}

Rebecca: Yes, because it just checks if it’s a 2 instead of a 1.

Interviewer: OK. Um. /And then everything else is still the same/ Layover’s
still the same. OK.

Rebecca: Yeah. So that’s why it’s prob—it’s not, uh, the neatest code or
whatever, because it’s the same thing six times. (Interview, April 6, 2012)

 27

 Given Rebecca’s assertions that her code wasn’t neat, I asked what, if
anything she might change if she hypothetically had another week to work on the
project.

Rebecca: Um, first I’d try and get it to make sure it worked completely /Ahh,
OK, yeah/ this way, {laughs}, uh, and then, if I had the week after that
whatever, I’d probably go through and see if I could figure out a way to make
it concise-r because he likes uh, neat, as, like, code that’s, uh, easy for the user
to see /uh-huh/ I guess. Uh, I forget what, I keep forgetting what the word he
used was at the beginning of the year, but uh, just very concise and, uh, this is
[a] very expanded {laughs} way of coding, but, it made sense to me at the
time and I was just like “I just want something that makes sense right now.”
/Right/ So, that I can actually work with and have an idea.

Interviewer: Um, OK. So, so it would take you some extra thinking to figure
out /Mmmhmm/ how to break this down into /Yes/ smaller stuff /smaller
code/ Do you feel like you’ve had a lot of practice doing that, or like?

Rebecca: Uh, a little. Like, but, a lot of times in [Basic Programming] they
didn’t really mention too much about being concise. They were just like “if
you can do it, do it” {laughs} /OK/ So I usually stuck to what made sense to
me /Right/ uh, to turn the projects in. (Interview, April 6, 2012)

 In summary, Rebecca’s “expanded way of coding” was a way of expressing
ideas in code that, in her own words, “made sense” to her. Moreover, her Basic
Programming course seemed, to her, to set expectations that functionality comes first;
“neatness” second. If she hypothetically had more time to work on the project, her
first priority would be to get her existing code working. Consequently, Rebecca’s
repetition of code can be understood as a kind of pragmatic solution to a difficult
problem: choosing which computational techniques were best for accomplishing a
complex goal. Moreover, her approach was shaped by the fact that her Basic
Programming course historically valued a philosophy of “if you can do it, do it”
(Interview, April 6, 2012). Ultimately, those factors seem to be what led Rebecca to
choose repeating code that made sense to her over the difficult-to-envision alternative
of a “giant while loop.”

2.6 Discussion
 When we consider evidence from both code snapshot histories and clinical
interviews with Rebecca, we can draw several plausible conclusions about Rebecca’s
patterns of software development on this project. Moreover, those conclusions can
spur larger considerations about theorizing student learning and considering
alternative instructional strategies that may be more responsive to student needs.
Below, I synthesize and discuss patterns in Rebecca’s development.

 28

2.6.1 Rebecca’s key design decisions are made early, persist
through to her final submission, and carry consequences

 On both her non-stop flight code and her one-stop flight code, key structural
features of how Rebecca’s code works never meaningfully change after Rebecca
introduces them. In particular, Rebecca’s use of fscanf() patterns (as opposed to
storing the data persistently in memory) occurs extremely early in the work history of
the project. The fscanf() patterns initially appear in Rebecca’s flight-checking code on
March 19, the third of what would be 286 chronological snapshots we have
comprising Rebecca’s work on the project.28 We note several consequences that arise
because these design choices were made early and persisted to the final code.
 First, Rebecca’s early choice not to persistently store data likely forced her
into the complicated scanning loop logic she developed later to solve the one-stop
flight problem. A bit of explanation may help here. Because the database students
were building has multiple uses, including uses that find flights for users, to be
successful Rebecca had to write functionality that found both non-stop and one-stop
flights for users. But, Rebecca initially designed each part of her code—airport
listings, flight listing, non-stop flight search, and one-stop flight search—with its own
internal fscanf() loops, as opposed to having the four of them each refer out to a
separate module that could handle reading in data. The result is that none of her
individual modules share file-scanning code, and repeat data look-ups necessarily
have to be handled by creating another nested scan loop. A design where code with a
common function is pasted repeatedly into separate modules contrasts strongly with
one in which separate modules all refer out to a single external piece of code.29
 We can understand Rebecca’s development as involving a kind of design
inertia. Because she decided from the start to scan information using fscanf()
separately in each module, her later code was also beholden to that commitment. The
end result is that increasing the problem complexity a small amount (the challenge of
handling one-stop flights versus non-stop flights) forces her to write much more code
that is itself more complex in its flow of control. And, when we consider her seven-
fold repeated code for checking flight availability on given days, there are similar
consequences. The decision—whether intentional or not—to create seven different
conditional paths forces Rebecca to write and maintain much more code over time as
the project evolves. As we suggested in section 2.4.3, having a large number of

28 The project was distributed to students on March 5 and was due March 28, but the
bulk of Rebecca’s work on the project (284 of the 286 snapshots) occurs beginning
March 19.
https://github.com/TLPLEngineeringEdResearch/Rebecca/compare/e0a7caab4eb2d84
01a0e50e8c6c6d8b514e9054e...0e8a5c606ef30f3b404024fdfad17d8d50e32456
29 As an analogy, imagine a supermarket where every unique type of item on the shelf
has a cash register specific to that item next to it. To buy an item shoppers have to
check-out individual items as they move through the store. It’s a pain for shoppers
because shoppers have to swipe their cards at dozens of separate item-specific
registers across the store just to pay for a single grocery run. It’s a pain for store-
owners because now there are literally hundreds of individual registers to manage,
maintain, and upgrade.

 29

locations to keep in sync is likely what made Rebecca vulnerable to one of the errors
she ultimately introduced into her code.

2.6.2 Her design decisions may be influenced by framing and
overzealous transfer

 Rebecca said in our interviews that she explicitly tried to reuse solutions from
the previous semester’s fantasy football project. Our code snapshots help us
understand the extent to which that’s true. Rebecca’s first compile for her flights
database work begins with this commented line of code:

//Rebecca Wells’s Fantasy Football Team Maker: Project 1

Thus, our interview with Rebecca corroborates the snapshot evidence that Rebecca
directly copied code from a prior project. Moreover, Rebecca’s behavior of copying
her old fantasy football code suggests several implications.
 First, to extend our point in section 2.6.1, Rebecca’s “design inertia” actually
traces as far back as the decisions she made during the first project of her first
semester of programming. That is, by copying code (and particularly file-scanning
logic) from an old project, she was incorporating core functionality that she designed
when she first learned to program. Admittedly, code reuse isn’t in and of itself a
problem in software development. Parson and Saunders (2004), for example, have
written on cognitive heuristics that keep professional software engineers from reusing
code, even when reusing and extending existing software artifacts is the best course
of action on a software project. So, the concern isn’t that Rebecca reused code, but
rather the matter of what cognitive dynamics were at play that directed her choice to
reuse that code. In that regard, the constructs of framing and transfer may help us
better understand Rebecca’s activity.
 Framing, as it has been applied in contexts such as physics education (Elby &
Hammer, 2010; Hammer et al., 2005; Scherr & Hammer, 2009) and mathematics
education (van de Sande & Greeno, 2012) concerns how participants understand the
social and intellectual activities in which they’re engaged. Of particular relevance to
studying Rebecca is the notion of epistemological framing, which van de Sande and
Greeno (2012) summarize as

participants’ understanding of kinds of knowledge that are relevant for use in
their activity and the kinds of knowledge, understanding, and information they
need to construct to succeed in their activity (e.g., what kind of information
would count as a solution to the problem they are working on). (van de Sande
& Greeno, 2012, p. 2)

Rebecca’s decision to copy code from fantasy football implicitly reflects her
orientation toward what kinds of knowledge (the course topic of scanning information
from files) are relevant to solving the problem. More broadly, note that in Rebecca’s
interview she explains that her primary objective is to get a solution that works,
which stands in contrast to having a design priority like having a solution that is

 30

elegant, or one that transparently manages complexity. That commitment again
reflects a manifestation of epistemological framing as “what would count as a
solution,” where for Rebecca what counts is a solution that works.
 Additionally, Rebecca saw the flight database project as a new instance of a
prior problem: fantasy football. Consequently, she consciously adapted past solution
patterns, because the flights database project looked like it contained problems she
had already solved in previous code. Rebecca’s deliberate reuse of old code can be
readily understood as an example of what Schwartz, Chase, and Bransford (2012) call
“overzealous transfer”:

Of particular concern are situations where students transfer skills, knowledge,
and routines that are effective for the task at hand but may nevertheless be
sub-optimal in the long run because they block additional learning. We will
call this overzealous transfer (OZT)—people transfer solutions that appear to
be positive because they are working well enough, but they are nevertheless
negative with respect to learning what is new. (Schwartz et al., 2012, p. 206)

In short, when students overzealously transfer prior knowledge as Rebecca did, “they
may believe they are doing the right thing, and without appropriate feedback they
cannot know otherwise” (Schwartz et al., 2012, p. 206).
 In Rebecca’s case, the constructs of framing and overzealous transfer together
let us describe why she would have repurposed a solution that she felt was adequate,
even to the exclusion of the topics being taught in class and the explicit directions in
the project brief. By framing the flights database problem as a new instance of an old
problem, Rebecca treated it as she did the old problem. But, she arguably transferred
too much of the old code’s structure; so much that she had to introduce even more
complexity into her code just to make the transferred parts work properly under the
new constraints. And, because her framing of the task seemed to privilege a
philosophy of “if you can do it, do it” (Interview, April 6, 2012), her primary goals
were to get her program to work, by whatever means she could understand and trust.

2.7 Conclusion
 In closing, even with a complete snapshot history and over five hours of
clinical interviews, it’s still an enormous challenge to thoroughly understand one
student’s design trajectory on a project. The challenge is both methodological and
theoretical. Through interviews we know what Rebecca was thinking retrospectively,
but we still work at a remove from understanding what she was thinking in the
precise moments she wrote her code. Conversely, our snapshots provide a detailed
record of the state of her code every time she compiled. But, our snapshots are limited
by the kinds of materials they can track and the frequency with which they’re taken.
We don’t know, for instance, what Rebecca might have been talking to others about
while sitting in a dorm lounge working on her project. And, because Rebecca
wouldn’t always compile frequently, some snapshots detail large changes to the code
made over long periods of time—hours or days—which can limit our ability to
precisely determine what happened, and when.

 31

 From a theoretical perspective, we find our attempts to understand her design
decisions involve appeals to constructs of a finer granularity and dynamism than are
typically considered when studying first-year programming courses. Understanding
why fscanf() loops dominate Rebecca’s flight search code, for example, pushes us to
consider the effects of how Rebecca framed the task and the subsequent overzealous
transfer that resulted. And, understanding why code gets repeated seven times pushes
us to consider how emotion couples with sense-making in students’ design decisions.
In Rebecca’s case, a time-pressured preference for code that “makes sense right now”
translated to a design of explicitly repeating procedures instead of elegantly
abstracting them.

 32

3 Study 2 – What directs and sustains students’ in-
the-moment programming activity?

3.1 Introduction

Although imaginative and carefully designed, the Harvard course taught that
there is only one right way to approach the computer, a way that emphasizes
control through structure and planning. There are many virtues to this
computational approach (it certainly makes sense when dividing the labor on a
large programming project), but Lisa and Robin have intellectual styles at war
with it. Lisa says she has “turned herself into a different kind of person” in
order to perform, and Robin says she has learned to “fake it.” Although both
women are able to get good grades in their programming course, they
represent casualties of this war. Both deny who they are in order to succeed.
(Turkle & Papert, 1991, p. 165)

 Over 20 years ago Sherry Turkle and Seymour Papert called for
epistemological pluralism in computing education. Their argument — in my view —
had multiple parts:

1. Programming a computer involved a shift in how one thought about the nature
knowledge from a propositional what is to an imperative how to (Abelson &
Sussman, 1996; Papert, 1980).

2. Historically, there was a tendency to treat computers and the act of
programming them as an extension of the same Western logico-deductive
knowledge tradition that fueled science.

3. Recent scholarship, often at the intersection of post-structuralism and social
studies of science, had been troubling the idea that knowledge-work in science
proceeded solely by way of logical deductions (Keller, 1983; Latour, 1987;
Traweek, 1988)

4. Data from professionals suggested programming, too, didn’t proceed solely
by way of the structured-planning approach emergent from Western logico-
deductive knowledge traditions. There were many ways of knowing and
constructing knowledge in programming.

5. A viewpoint of epistemological pluralism — embracing multiple kinds and
ways of knowing — was informing the field of science studies but not, to a
large degree, how education researchers thought about or taught computing.

6. The lack of support for diverse ways of knowing in computing classrooms
demonstrably hurt students.

To Turkle and Papert (1991), the result of this culturally-rooted epistemological
tension was a war. More specifically, it was a war where students of computing were
the casualties, and the aggressor was a distributed failure to recognize, embrace, and
support diverse ways of knowing. While I think their strong-form characterization of
a “war” no longer applies, their consideration of epistemological issues is still
relevant two decades later. An understanding that computing does in fact involve

 33

diverse ways of knowing should continue to inform research and discussions on
learning
 This paper tries to model what directs and sustains students’ in-the-moment
activity when they program. Its focus is on early-stage program design; analyzing
how what students say, do, write, and gesture even before they type code can help us
improve theories of cognition and activity in learning programming. Using a
“revelatory case study” (Yin, 2009) of two students in an introductory programming
course, I argue the following:

1. Students’ early-stage design activity reveals patterns outside the explanatory
scope of misconception-based accounts of cognition.

2. For a subset of phenomena, we can recast students’ productive capacities and
their difficulties in terms of epistemological stances.

3. Such recastings are analytically powerful. Beyond Rebecca and Lionel, they
could potentially explain the diversity of practices I saw other students take
up.

4. As evidenced by work in science and math education, dynamic
epistemological models can offer a lens for reforming assessment and
instruction.

3.2 Literature Review
 I begin by exploring the historical legacy of Turkle and Papert’s (1991)
remarks on epistemological pluralism in computing. I’ll then describe what I see as a
well-intentioned obstacle: the research-based preoccupation with students’
misconceptions in computing education. These two stra.

3.2.1 Computing culture should support a diversity of ways of
knowing

 Turkle & Papert (1991) describe a tension between individuals and a kind of
cultural collective. In this tension, individual students and their personally-identified
ways of knowing were in conflict with the larger culture of computing and its
manifested ways of knowing. Lisa, for instance, was a Harvard student who identified
as a poet:

Lisa experiences language as transparent, she knows where all the elements
are at every point in the development of her ideas. She wants her relationship
to computer language to be similarly transparent. When she builds large
programs she prefers to write her own smaller “building block” procedures
even though she could use prepackaged ones from a program library; she
resents the latter’s opacity. (Turkle & Papert, 1991, p. 164)

Turkle and Papert connect Lisa’s programming practices to Lisa’s personal view of
knowledge. She writes building block procedures because of a continuity between
herself as knower-of-her-own-poetry and that of knower-of-her-own-programs.
Across both contexts, Lisa resents opacity because it is an obstacle to her knowing.
But, that resentment slows her progress on projects in the class.

 34

 In part because of her commitments to transparency and the difficulty they
created, Lisa changed her approach to programming. She ultimately had to, in her
words, “be a different kind of person with the machine” (Turkle & Papert, 1991, p.
164). Turkle and Papert explain:

She had been told that the “right way” to do things was to control a program
through planning and black-boxing, the technique that lets you exploit opacity
to plan something large without knowing in advance how the details will be
managed. Lisa recognized the value of these techniques — for someone else.
She struggled against using them as the starting points for her learning. Lisa
ended up abandoning the fight, doing things “their way,” and accepting the
inevitable alienation from her work. (Turkle & Papert, 1991, p. 164)

The phrase “inevitable alienation” is particularly damning. One might accuse Turkle
and Papert (1991) of hyperbole, but research from other disciplines suggests they’re
not overstating the case. Identity alienation for epistemological reasons — or some
variation of them — is playing out in other subjects as well.
 Connections and tensions between identities, learning, and personal ways of
knowing are not unique to computing education. Wortham (2006), for example,
detailed instances of social identification and academic identity as jointly emerging in
a combined high school English and History class. Nasir and colleagues explored
how different learning environments afford access to identity, domain practices, and
self-expression (Nasir & Cooks, 2009; Nasir & Hand, 2008). To single out one study,
Nasir & Hand (2008) followed players “from the [basketball] court to the classroom.”
They found the court afforded players a sense of role on the team, chances to be
expressive through play, and “access to the domain [of basketball] as a whole” (Nasir
& Hand, 2006, p. 147). Comparatively, the mathematics classroom offered little (if
any) sense that students were on a team, a much narrower role for them as having
either right or wrong answers, and no strong sense of self-expression or creativity
through activity. These markedly different contexts led not only to differences in
kinds of activity but, Nasir and Hand (2006) argue, divergent practice-linked
identities for the players. In a sense, players had a different identity on the court than
they did in the mathematics classroom because who they were was strongly coupled
to a sense of their relationship with a practice.
 Boaler’s work on learning and identity in mathematics classrooms (Boaler &
Greeno, 2000; Boaler, 1998, 2000, 2002) offers resonant findings. In particular,
Boaler (2000) strongly echoes the student voices in Turkle and Papert (1991). Where
Turkle and Papert’s aggressor is the dominant computing culture, Boaler describes a
beast with similar effects in the form of “school mathematics” — the monotonous,
meaningless (Boaler, 2002, pp. 383–384) imposition of routinized mathematical
procedures in ways that seem far removed from the real world. Of school
mathematics, Boaler writes:

School mathematics, for many of them, was of another world and to fully
engage in that world, students needed to suspend their knowledge of the real
world, suppress their desire to interact with others, and strive to reproduce

 35

standard procedures that held little meaning for them. (Boaler, 2002, p. 392
emphasis in original)

Schoenfeld (1988, 1991) had already argued school mathematics could and did depart
substantially from the core of mathematical thinking. Boaler established that such
school mathematics could alienate learners (Boaler, 1998, 2000) and influence their
feelings about pursuing mathematics after secondary school (Boaler & Greeno, 2000).
 Most recently, Danielak, Gupta, and Elby (in press) extended those findings in
engineering education. In their 3 ½ year case study of an electrical engineering
undergraduate named “Michael,” those authors argued Michael’s practice of sense-
making in engineering coursework was strongly coupled to his identity. Michael’s
passion for deeply understanding concepts, much like Lisa’s (Turkle & Papert, 1991)
desire to understand every element of her program, did not mesh neatly with the
larger culture of his courses. But, because Michael’s practice of sense-making
entwined with his identity, forces that pushed against sense-making alienated him.
That tension was particularly pointed when Michael described his father’s resistance
to Michael’s way of thinking:

[My dad said] “you’re just an undergraduate. Nobody expects undergraduates
to understand how anything works. That’s why you go to graduate school.” I
was like “look, you know. I’m gonna be an unhappy person if I have to....I
have life goals other than to just get a good grade on the exam. Other things
are important to me.” (Danielak et al., in press)

And, much like Turkle and Papert’s (1991) Lisa, Michael learned to curtail parts of
his identity to get by in class:

I think the reason [pursuing deep learning] actually hasn’t affected my GPA is
because I view learning as a hobby. So, as with any hobby, you shouldn’t let it
interfere your GPA. But it is one of my hobbies, and I do enjoy learning, I
just—up to the point where I get my grades done {raises eyebrow}. (Danielak
et al., in press)

 Ultimately, research suggests the identity-epistemology tensions Turkle and
Papert (1991) described in computing resonates with those found in related
disciplines. And, what such accounts — particularly those of Boaler and others
(Boaler & Greeno, 2000; Boaler, 1998, 2000, 2002; Danielak et al., in press) — have
in common is a culturally-sanctioned “right way” (Turkle & Papert, 1991, p. 164) of
thinking or knowing that alienates some students. Avowedly such ways of knowing
have use and value. Turkle & Papert themselves acknowledge “there are many
virtues” to black-boxing and top-down design in programming (Turkle & Papert,
1991, p. 165). But,

1. When a preponderance of results from science studies suggests a plurality of
ways of knowing among practicing scientists and programmers, and

2. When research from education shows that the inflexible imposition of one
way of knowing above all else is alienating students, then

 36

3. It’s worth reconsidering whether a narrow sense of what counts as knowing
might still be hindering improvements in computing education.

In the next section, I turn to misconceptions research in computing education. In
keeping with observations 1–3, I argue research approaches that inflexibly privilege
canonical knowledge do so at the expense of other productive knowledge and ways of
knowing that students have.

3.2.2 Misconceptions research in computing education tends to
ignore students’ productive knowledge

 In the past three decades, educational research has had a marked focus on
students’ misconceptions in programming. It’s a focus with a sensible origin.
Students get things wrong in programming — often systematically so — and in ways
that seem resistant to instruction. The cause of those errors is theorized to be
something cognitive, whether it’s a “bug” (Pea et al., 1987; Pea, 1986; VanLehn,
1990) a “misconception” (Bayman & Mayer, 1983; Bonar & Soloway, 1985; Clancy,
2004; Gal-Ezer & Zur, 2004; Herman et al., 2008; Kaczmarczyk et al., 2010), a
“belief” (Fleury, 1993) or a “student-constructed rule” (Fleury, 1991, 2000).
Instruction should try to identify, address, and correct these misconceptions (Clancy,
2004) because they can represent barriers to learning.
 How that line of thinking and research becomes problematic is two-fold. First,
when taken in total the alleged brokenness of student knowledge begins eclipsing all
else in studying the cognition of learning to program. In other words, most
cognitively-focused educational research in computer science treats students as
having varied degrees of deficiency with respect to canonical knowledge. Below is an
unordered, partial sampling of topics about which researchers have documented
students’ misconceptions. Note across the list the variation in both the grain sizes of
students’ misconceptions and the programming languages in which they manifest:

• Objects in object-oriented programming (Holland, Griffiths, & Woodman,
1997)

• Algorithms and data structures (Danielsiek, Paul, & Vahrenhold, 2012; Paul
& Vahrenhold, 2013)

• Programming statements in BASIC (Bayman & Mayer, 1983)
• Programming in Java (Fleury, 2000)
• Programming in Pascal (Fleury, 1993)
• Parameter-passing (Fleury, 1991)
• Arrays in Java (Kaczmarczyk et al., 2010)
• Objects in Java (Kaczmarczyk et al., 2010)
• Algorithms and computational complexity (Trakhtenbrot, 2013)
• Boolean logic (Herman et al., 2008)
• The efficiency of algorithms (Gal-Ezer & Zur, 2004)
• The Build-Heap algorithm (Seppälä, Malmi, & Korhonen, 2006)
• Hashtables (Patitsas, Craig, & Easterbrook, 2013)
• The correctness of programs (Kolikant & Mussai, 2008)

 37

Clancy (2004) provides a comprehensive overview of this line of research, though in
the past decade it has only grown. Indeed, roughly half the articles above were
published in the ten years since Clancy’s overview.
 Identifying and removing barriers to student learning seems like a good thing.
So, it should follow that cataloging student misconceptions and developing remedies
for them should also be a good thing. But, the logical implication isn’t that clean. In
some cases students display productive, useful knowledge that’s either ignored or
outright criticized by researchers. Aligning students toward canonical knowledge
makes sense, but doing so at the expense of—or in direct contradiction to—useful
ways of knowing seems undesirable at best. Next, I expand on two examples from
misconceptions research in programming. Specifically, I show how and why I think a
misconceptions focus in programming casts aside students’ useful intuitions and
understandings.
 The first example comes from Kaczmarczyk et al. (2010). Part of that study
involved giving students snippets of Java code and asking students to diagram (or
pseudo-code) how the information would be stored in memory. Below I have
reproduced the code for Problem 2 (Kaczmarczyk et al., 2010, p. 110):

Cheese[] cheeses = new Cheese[4];
Meat[] meats = new Meat[2];
Turkey turkey;
Ham ham;
RoastBeef roastBeef;
boolean lettuce = true;
boolean tomato = true;
SauceType sauceType = new SauceType();
int numMeat;
int numCheese;

In diagramming this information, a student in the study makes a mistake:

Student3 makes incorrect assumptions about connections between variables to
the extent that the student makes a mistake concerning the types of the
variables. As a result, the student places Objects of different types in an array
whose type matches none of them: “And so because there’s two arrays, cheese
and meats, uh, all those turkey and ham and roast beef are gonna be sorted
into the meats array.” (Kaczmarczyk et al., 2010, p. 110)

The researchers are correct in the sense that turkey and ham and roastBeef will not
be sorted into the meats array. First, there is no code here that places turkey and ham
in the array; there is only code that declares them as variables. Moreover, as written,
an attempt to place turkey and ham and roastBeef into the array would fail. Because
of type restrictions in Java, only objects of class Meat (or objects that inherit from
class Meat) can go in the array. turkey and ham and roastBeef are, perhaps
confusingly, references to object instances of classes Turkey and Ham and RoastBeef,
so in the current snippet they cannot enter an array of type Meat because (1) they
don’t yet exist as objects and (2) even if they did exist, their types don’t match the
array’s type. The authors call this misconception semantics to semantics, which
occurs “when the student inappropriately assume[s] details about the relationship and

 38

operation of code samples, although such information was neither given nor implied”
(Kaczmarczyk et al., 2010, p. 110).
 Again, the researchers are right that the student is failing to describe the code
in a way consistent with canon.30 But, in their non-canonical thinking Student3
evidences potentially productive insights about design. Precisely because there is no
code stating that turkey and roastBeef and ham are sorted into the array, the
student is inferring that to be true. And, while that behavior is not what’s happening,
it would be sensible to design a program where specific instances of classes Turkey
and Ham and RoastBeef could go into an array of type Meat. To do so, a designer
could define Turkey and Ham and RoastBeef as inheriting from Meat.
 Student3 has an idea about a relationship between entities where that
relationship is not specified in the code. Kaczmarczyk et al. (Kaczmarczyk et al.,
2010) focus only on the downside of the idea: the student fails to display a proper
understanding of how arrays work in Java. Moreover, the student might be prone to
similar mistakes of inferring information that does not actually exist in code. But,
there is also an upside of this idea. Because Student3 is thinking about real-world
propositions like turkey and ham being kinds of meat, they might be prepared to
appreciate and discuss an object-oriented way to put turkey in a Meat array. But, that
possibility is speculative conjecture. We can’t know for certain whether Student3
could be tipped into a productive object-oriented design activity around the meats
example because that question was not a focus of the research.
 My second example of research that criticizes students’ non-canonical
understandings comes from Bonar and Soloway’s (1983) study of Pascal
programmers, part of which is discussed in Pea (1986). A student in Bonar &
Soloway’s study was asked to “Write a program which reads in ten integers and prints
the average of those integers” (Bonar & Soloway, 1983, p. 12). In pseudo-code, she
wrote:

Repeat
(1) Read a number (Num)
 (1a) Count := Count + 1
(2) Add the number to Sum
 (2a) Sum := Sum + Num
(3) until Count :=10
(4) Average := Sum div Num
(5) writeln (‘average = ‘,Average)

The interviewer then asked whether (1a) and (2a) were “the same kinds of
statements.” That interchange is reproduced here:

Interviewer: Steps 1a and 2a: are those the same kinds of statements?

Subject: How’s that, are they the same kind. Ahhh, ummm, not exactly,
because with this [1a] you are adding - you initialize it at zero and you’re

30 In this case, canon is the specifications and operations of the Java language and its
compilers.

 39

adding one to it [points to the right side of 1a] which is just a constant kind of
thing.

Interviewer: Yes

Subject: [points to 2a] Sum, initialized, to, uhh Sum to Sum plus Num, ahh -
thats [points to left side of 2a] storing two values in one, two variables [points
to Sum and Num on the right side of 2a]. That’s [now points to 1a] a counter,
that’s what keeps the whole loop under control. Whereas, this thing [points to
2a] was probably the most interesting thing…about Pascal when I hit it. That
you could have the same, you sorta have the same thing here [points to 1a], it
was interesting that you cold have, you could save space by having the Sum
re-storing information on the left with two different things there [points to
right side of 2a], so I didn’t need to have two. No, they’re different to me.

Interviewer: So - in summary, how do you think of 1a?

Subject: I think of this [point to 1a] as just a constant, something that keeps
the loop under control. And this [points to 2a] has something to do with
something that you are gonna, that stores more kinds of information that you
are going to take out of the loop with you. (Bonar & Soloway, 1983, p. 12)

Pea’s (1986) interpretation? “Here, again, we see the student believing that the
programming language knows more about her intentions than it possibly can” (p. 32).
 As before, this student has an idea about relationships in code. Pea (1986) see
the downside of her idea: believing PASCAL can understand shades of programmer
intent when, in fact, it cannot. And again, that downside is real. It could cause trouble
for this programmer later on if she expects PASCAL to interpret her intent and it
cannot.
 In defense of the student, the question — as asked — is vague. Are those
statements the same to whom and in what way? Pea (1986) treats the data as though
she meant “the same to PASCAL.” Indeed, maybe she did, in which case his
interpretation has traction. But, another interpretation is that she meant to herself, or
to someone else reading the code. Those statements might not be the same to her
because she treats (1a) as having a function of controlling iteration while (2a)’s job is
to combine two numbers into a new sum.
 These two purposes, which for the sake of description I’ll call keeping control
and totaling up are, in a sense, different. The PASCAL compiler (and runtime) does
not differentiate them, but humans can. And, humans may well want to differentiate
them. diSessa (1986) describes exactly this kind of differentiation as a consequence
of separating the structural understanding of a programming language from a
functional understanding of a language. As an example, he discusses the
structure/function difference with respect to variables:

The structural aspects of a variable in a computer language are given primarily
by the rules for setting their values and for getting access to their values.
These rules apply in all contexts. In contrast, a variable’s functions might

 40

vary. Sometimes they might be described as “a flag” or more generally, as “a
communications device.” At other times a variable might function as “a
counter,” “data,” or “input.” (diSessa, 1986, p. 202)

 The student in Bonar & Soloway’s (1983) study did not show evidence of
understanding the structural similarities between (1a) and (2a) in her pseudo-code.
And, those authors as well as Pea (1986) justly insist that similarity is important for
students to understand. From a conceptual standpoint, seeing the structural similarity
constitutes a part of “knowing” PASCAL. But, even if knowing PASCAL were not
the goal, seeing the similarity helps one to take the perspective of a computing agent
that has no means for discerning programmer intent. Such perspective-taking may
help students avoid mistakes that arise from over-assuming what a computer
“understands.”
 The student did show evidence of understanding a functional difference
between (1a) and (2a), but Pea (1986) does not remark on that kind of understanding
at all.31 Again, I claim this oversight is part of a subtle but observable trend in
programming misconceptions literature. While, or perhaps because research has been
so preoccupied warring with students’ problematic knowledge, it has sometimes
failed to recover the productive knowledge (or resources for building it) students
have. In this example, the student already has a grasp that syntactically similar
statements could serve different conceptual purposes. Hypothetically, the student
might use that information in design by calling up the “ = + 1” syntactical
template when the situation seems to demand keeping control, while calling up “ =

 + number” when totaling up is the goal. And, the idea that structurally identical
symbol templates can serve different functional and conceptual purposes fits precisely
in line with Sherin’s (2001) theory of symbolic forms. For example, the symbolic
forms parts-of-a-whole and base+change have different conceptual schemata. Parts-
of-a-whole refers to the contributions of component entities while base±change
describes a kind of accumulation. Specifically, the terms in base±change “play
different roles” (Sherin, 2001, p. 534) But, the two distinct conceptual schemata share
what I would argue is the same concrete symbol template of how to write an
expression: = + .
 The problem, for learning to program, comes in needing to fluidly interpret
and write code in languages that may demand incommensurable, or at least distinct,
conceptual schemata. As I show later in Table 4, three current programming
languages make remarkably different use of the plus sign (+) as an operator.
Crucially, some of the entailing ways to make sense of how + works in those
languages don’t exist in Sherin’s (2001) catalog of conceptual schemata. In other
words, I would argue there are conceptual ways a programmer may need to think
about interpreting or writing a = + symbol template that Sherin doesn’t

31 Also glossed over is, to me, another important difference: a programmer might not
know in advance which numbers are being passed in to the sum statement. So, in
advance the programmer can say nothing about how the value of Sum will change as
the loop iterates. In contrast, the programmer knows exactly how the value of Count
will change with each loop iteration.

 41

enumerate.32 To follow that implication, the canonical body of knowledge about
which programmers must reason is itself fractured, because different languages
design their operations around different symbolic and conceptual metaphors.
 To return to misconceptions, what drives research on students’
misconceptions is largely a need to get students to program computers and reason
about computation in ways that are canonically correct. And, those are assuredly
worthwhile goals. But, as I’ve argued, we can already identify cases where a narrow
misconceptions focus is silent about or dismissive of students’ useful intuitions. We
can also identify the further problems whereby unilateral emphasis on one language’s
canon opposes the vocabulary of symbolic forms (and diverse conceptual schemata)
expert programmers ultimately need (Sherin, 2001) Taken in total, that silence,
dismissiveness, and narrow view of refining knowledge perpetuates a deficit-focused
discourse about student’s knowledge in computing.33 Such a perspective also fails to
address what aspects of students reasoning might get broken by attempts to “fix” such
“misconceptions”.
 It’s important to note that misconceptions research in computing didn’t always
treat students’ non-canonical knowledge this way. I begin the next section by
backtracing to some of the earliest work on students’ cognitive “bugs”. There, we
find researchers talking more explicitly about what’s useful in students’ non-
canonical knowledge—a stance largely absent in modern computing misconceptions
research.

3.2.3 Not all cognitive programming bugs imply a problem with
the student

 What’s curious about Pea’s (1986) comments on Bonar & Soloway (1983) is
that Pea drew different conclusions from the data than Bonar and Soloway did. Pea
(1986) emphasized that when the student thought two semantically-equivalent
assignment statements in PASCAL were different, it was a problem of egocentrism:
“students assume that there is more of their meaning for what they want to
accomplish in the program than is actually present in the code they have written” (p.
30). In other words, Pea treated the data as a fairly clear example of a class of bugs.
Specifically, he saw a bug class in which students simply assumed the interpreter or
runtime could infer the code author’s shades of intent.
 Bonar and Soloway (1983), by contrast, were less quick to make inferences
either about the nature of the bug or about the intervention it entailed. Rather than
jump to definitive conclusions, they were circumspect:

It is not clear exactly how to react to the bugs we have uncovered in novice
understanding of programming. In some cases it may be appropriate to design
new languages or constructs. Often, better instruction would take care of the
problem. The intent of our studies is to better understand the source of the

32 One of the most obvious is the movement from seeing “ = + ” as a statement of
equality to seeing it as the storage of a sum to a variable.
33 Worse still, in my view, is that there is a pattern of researchers failing to discuss or
acknowledge students’ productive knowledge even when their own data supports it.

 42

mismatches and misconceptions that cause novice bugs. Only once a bug is
uncovered and understood are we ready to create a remedy for that bug.
(Bonar & Soloway, 1983, p. 12)

That the authors would even consider developing new constructs or languages is a
noteworthy distinction. Rather than assume in toto that students with “bugs” had
wrong knowledge, the authors instead suppose cognitive bugs have plausible origins
worth designing around. Moreover, they treat students’ divergence from canon as an
opportunity for research to learn from students. Precisely because students saw
functional differences (cf., diSessa, 1986) in semantically-equivalent PASCAL
statements, Bonar and Soloway (1983) reflect that perhaps programming languages
should be more expressive:

We find it quite interesting that novices seem to understand the role or
strategy of statements more clearly than the standard semantics. Such roles
discussed here include “counter variable,” “running total variable,” “running
total loop,” and “first, then rest loop”. (See Soloway et al [1982b] for a
detailed discussion of novice looping strategies.) Much work in programming
languages is concerned with allowing a programmer to more accurately
express his or her intentions in the program. Perhaps we can learn something
from novices here - our programming systems should support recording the
roles the programmer intends for various statements and variables. (Bonar &
Soloway, 1983, p. 12)

Again, what’s noteworthy here is that rather than treating students’ non-canonical
views as a burden for instruction, Bonar and Soloway instead see them as an
opportunity for programming language designers to make languages better.
 That insight—that instruction and design can meet novices where they are—
carries through to their final remarks about studying and analyzing novice
programming knowledge:

The experience and understanding of a novice are available for analysis. In
particular, our results suggest that the knowledge people bring from natural
language has a key effect on their early programming efforts. Our work
suggests that we need serious study of the knowledge novices bring to a
computing system. For most computerized tasks there is some model that a
novice will use in his or her first attempts. We need to understand when it is
appropriate to appeal to this model, and, when necessary, how to move a
novice to some more appropriate model. (Bonar & Soloway, 1983, p. 13)

I assume Bonar and Soloway structured their final line deliberately. If so, their
phrasing has three consequences:

1. Appealing to novice’s existing models gets precedence. That is, understanding
how to leverage novices’ existing knowledge comes first in research.

 43

2. Changing the models novices have comes next, and “when necessary.”
3. They speak of “how to move a novice to some more appropriate model,”

which does not necessarily entail the removal or destruction of novice’s
existing models.

Taken together, these points convey a sense of how Bonar and Soloway view learning
and instruction in computing. Instruction explicitly includes appeals to prior models
and knowledge students might already have. Learning, meanwhile, involves the
movement when necessary to more appropriate models of computation. As I explain
in the next section, such a view exactly aligns with a particular branch of
constructivism, where cognition is viewed as the complex activation of manifold
resources for thinking and knowing.

3.2.4 Examples motivate the need for contextual-sensitivity in
modeling programming cognition

 Let’s begin with two motivating examples. My aim with these examples is to
show how a practicing programmer might employ specific, distinct conceptual
models to reason locally about a piece of code. First, consider variants of the
PASCAL statements from Bonar and Soloway (1983), where an assignment
statement worked to increment a value and store the result back to that value. In Table
2 below, I imagine five different ways of writing a programming statement. Each of
the five ways is semantically equivalent to the others (or near enough for explanatory
purposes). And, in each example I add a layer of specificity to the syntax. I also
propose a corresponding interpretation of how I might apply interpret and think about
a given statement.34

34 I assume for simplicity’s sake that all variables and functions in my code samples
evaluate to floating-point numbers that can be combined under addition. I also
assume, crucially, that all statements are in the same hypothetical language and that
the variable names connote nothing to the computational interpreter.

 44

Table 2 – Five different interpretations of semantically equivalent programming statements in
the same language

Statement Programming Syntax How I might think about it

1 x = x + d An incrementer or accumulator
2 x = x + update Updating the value of x
3 x_position = x_position + update Updating the x-position with

uniform velocity
4 x_position = x_position + update(t) Acceleration on the x-position
5 x_position = x_position + update(…) Generalized x-position update

(update could be any function
of any number of parameters:
random noise, low-level
hardware functions getting
mouse or keyboard input, etc.).

I stress that the third column is about how I might think about each programming
statement. By no means am I making normative claims about how one ought to think
about it, or whether the statement actually does what its names might suggest it does.
Rather, “How I might think about it” reflects the kind of local meaning or
interpretation I might attach to such a statement when I work with it, given my
understanding of its role and context.
 Consider specifically statements 1 and 4. Statement 1 could very well be an
incrementer in some kind of iterative code. If I had to debug code that employs
statement 1, what I might do is exploit my knowledge of what d is (does it hold a
constant value? Is it 1?) and try inserting intermediate print statements into the
iterative code. Doing so, I can inspect textually how values change with each
iteration. In statement 4’s case, it could very well be that the position-update code
animates images on a screen. If there’s a problem with that code, one of the easiest
ways I might notice is that the acceleration seems off in the graphics. Consequently,
my debugging might call upon knowledge I have from kinematics. I might try
inserting code that draws a dot at the object’s on-screen position with each iteration,
leaving a trail I can visually inspect. I could then look at the path of the object’s
trajectory and the spacing patterns between successive dots as a first-pass test of
whether my code achieves the motion I want.
 To be clear, it’s not just that graphics might improve my efficiency in
debugging a statement. Rather, applying an interpretive frame that treats an
assignment statement as a kinematic position update lets me use conceptual
knowledge from physics to diagnose and fix problems in my code. If I view the
assignment statement as saying something about the motion of an object (cf.,
Hammer, 1994, p. 165), a field of knowledge and concomitant techniques from
physics becomes available to me to think with. But, if I focus only on the semantic-
level equivalence of statements 1 through 5, there would be no obvious reason for me
to access what I know about physics in order to reason about the code.
 My second example concerns statements that are syntactically-similar, rather
than semantically-similar. I proposed that the statements in Table 2 all came from the
same language. But, another phenomenon comes into play when different languages

 45

use the same symbology for conceptually different operations. Table 3 shows
examples of what look like semantically-equivalent operations, but in fact are not.

 46

Table 3 – Three syntactically-similar statements with very different semantics

Statement Programming Syntax Language How I think about it
1 i = i + 1 C Increments i by 1
2 w = w + “ly” JavaScript Appends “ly” to the

string w
3 p = p + geom_point() R (ggplot2) Composes a layer of

points onto a plot p
The catch here is that the plus operator takes on different roles in different languages
because of how those languages define its use. Statement 1 increments a number in C;
Statement 2 appends the letters “ly” to a string; Statement 3 adds a layer of points to a
statistical graphics plot. These different kinds of operations become even more
apparent and consequential when, for example, such statements are repeated. In the
R/ggplot2 code below,35 I’m using multiple reassignment statements to compose a
statistical graphics plot. The layered creation of a plot invites a very different kind of
conceptual interpretation than, say, repeatedly accumulating numbers into a running
sum:

p <- InitializeGgplot_1w()
 p <- p + GrandMeanLine(owp)
 p <- p + GrandMeanPoint(owp)
 p <- p + ScaleX_1w(owp)
 p <- p + ScaleY_1w(owp)
 p <- p + JitteredScoresByGroupContrast(owp, jj)

One obvious reason for thinking about this code with a different interpretive frame is
that numeric addition is commutative; composing a plot is not necessarily
commutative.36 So, despite the syntactic similarity, reassignments that compose a plot
using reassignment (as above) does not obey the same rules as reassignments for a
running total. But, even within this code block, statements that look alike perform
operations of a different nature. While some expressions (e.g, “+
GrandMeanLine(owp)”) add a visual layer to a plot, others modify features of the plot
(e.g, “+ Scale_X(owp)”, which adjusts the scales on the plot’s x-axis to fit the
numeric range of the data).
 Given these motivating examples, it seems sensible to think there’s utility in a
programmer having different conceptual metaphors available to think about and work
with code. Example 1 shows that choosing to apply knowledge from physics to a

35 In R, the assignment operator can be written as a directional arrow. The symbol <-
(“less-than, hyphen”) indicates the value on the right side of the symbol is being
assigned to the variable on the left side of the symbol. As used, the symbol itself is
semantically equivalent to having written an equals sign (“=“).
36 To convince yourself that plot composition isn’t commutative, imagine a scale
function that squares up the aspect ratio of a plot and another scale function that sets
the aspect ratio to 1.5:1. Applying the square function last produces a square plot;
applying it first produces a rectangular plot. String concatenation is also not
necessarily commutative. “cat” + “dog” evaluates to “catdog,” while “dog” + “cat”
evaluates to “dogcat.”

 47

piece of code can change the cognitive nature of debugging. There, debugging a
position-update statement becomes, in part, reasoning kinematically about the
properties of motion trails.37 Example 2 shows that across languages, programmers
might have to deploy different conceptual metaphors to reason about statements in a
locally-consistent way. Knowing that plots in ggplot2 can be composed layer-by-
layer with reassignment is crucial if you’re trying to write or understand code that
creates statistical graphics. But, I would argue that thinking about ◻ = ◻ + ◻ as
“compose new layer onto plot” can and does appeal to different kinds of knowledge
when compared to thinking about ◻ = ◻ + ◻ as “include this addend in the sum,”
which itself can and does appeal to different kinds of concepts when compared to
thinking about ◻ = ◻ + ◻ as “increment the counter.”
 Stepping back, I can build the following argument

1. Programming can be helped by applying conceptual models to code,
particularly when relevant domain-knowledge structures can advantageously
transform a problem (example 1)

2. But, conceptual models don’t work all the time for all statements. Because
languages are designed differently, the same syntax can actually correspond to
very different operations in code (example 2). And, that’s true both within and
across languages.

3. Consequently, it makes less sense to treat conceptual models as right or
wrong, and more sense to treat them as differentially advantageous for
thinking about what a piece of code does. (Thinking a “+” implies numerical
addition isn’t globally wrong in JavaScript, but it won’t explain why 1 + “1”
yields “11” as a result.)

4. It seems plausible that successful programmers, when reasoning about or
writing code, are able to dynamically access or deploy conceptual models that
are advantageous given the context (language, syntax, surrounding code).
Certainly such a supposition is in line with work suggesting students have
resources for thinking conceptually and dynamically about how mathematics
models real-world situations (Izsák, 2004; Sherin, 2001)

5. To model how programmers think with conceptual models, a suitable
framework should be able to account for the dynamic, context-sensitive
deployment of conceptual knowledge.

6. To model how programmers develop expertise, a suitable framework should
be able to describe higher-order phenomena. Such phenomena include
explaining how programmers come to have conceptual models or generate
new ones, why they decide to deploy them, and how programmers consider
which conceptual model (i.e., which way to think about code) is appropriate.

 Taken together, these assertions propose criteria for how we might strive to
model cognition in programming. Our modeling frameworks should be context-
dependent, dynamic, and capable of explaining where conceptual models come from.
They should also be able to account for phenomena that are not themselves

37 For comparison, consider the argument that ringing an aircraft speedometer with
physical markers changes the nature of cognition when pilots work to land a plane
(Hutchins, 1995b).

 48

conceptual, including what directs the use of certain kinds of conceptual knowledge.
In the learning sciences, such models already exist and have proven useful and
productive for thinking about thinking.

3.2.5 Manifold models of cognition explain context-dependence
and the growth of expertise

 In 1993, a pair of articles in the learning sciences staked a strong claim for
viewing knowledge as a network of pieces, isolated enough to be locally triggered but
trainable enough to fire in larger concerted patterns (diSessa, 1993; Smith, diSessa, &
Roschelle, 1993). Informed in part by agent-based accounts of cognition (Minsky,
1986) and complex systems models (diSessa, 2002), the central tenets of an “in-
pieces” approach hold that knowledge is emergent from interacting primitives, rather
than unitary and monolithic. An example from Smith, diSessa, and Roschelle helps
illustrate the point.
 The authors show that we might think of a rubber band as a different
conceptual entity depending on context. In several different situations—wrapped
around a newspaper, pulled taut as a string, spun to store energy in a toy plane
propeller—we intuitively think about the rubber band’s physical behavior differently:
one as a negligible part of the newspaper’s point mass, another as a transverse
pendulum (likely) obeying Hooke’s Law, and the third as a torsional spring. Those
differences in intuitive thinking reflect the contextual dependency of what we know
about the physical world:

In each of the rubberband examples, various pieces of intuitive physical
knowledge describe the mechanism at work: the rubber band binds the
newspaper, grips the jar lid, and acts a source of springiness for the bobbing
object. Although a mapping cannot be made from the rubberband to scientific
entities, it is quite easy to map these qualitatively distinct physical processes
to scientific entities and laws. For example, instances of binding almost
always map to a practically rigid body. Likewise, gripping maps to friction
forces, and springiness maps to Hooke’s law. This suggests that applicability
can depend directly on our intuitive knowledge—knowledge that exists prior
to any formal scientific training (Smith et al., 1993, p. 144).

 The in-pieces approach to modeling cognition has been used, among other
things, to explain how experts reason about fractions and decimals (Smith et al.,
1993), how students reason about forces in physics (diSessa & Sherin, 1998; diSessa,
1993; Hammer, 1996; Sherin, 2001), how students construct and evaluate algebraic
representations of physical situations (Izsák, 2004), and how knowledge transfers
across contexts (Hammer et al., 2005; Wagner, 2006). Because its starting assumption
is that knowledge is fragmented, knowledge-in-pieces can account for wide variations
of how people—particularly novices—use knowledge on a moment-to-moment basis.
In other words, because it assumes knowledge is local, it can still explain the kinds of
globally-inconsistent ways people might reason about physical situations (diSessa,
1993). As a framework, an in-pieces approach ultimately argues that models of
concept replacement and good/bad criteria for knowledge should be supplanted by a

 49

learning model of alignment/refinement of prior knowledge and the consideration of
knowledge as productive/unproductive.
 Hammer and colleagues have worked to extend the in-pieces approach to
explain how students’ epistemological activity—how they orient toward knowledge
and knowing in a context (Hammer et al., 2005; Hammer & Elby, 2002, 2003).
Specifically, those authors use two core theoretical constructs to explain students’
stances toward knowledge and knowing:

• Epistemological Resources are the epistemological equivalent of diSessa’s
phenomenological primitives (p-prims). Resources, the authors propose, are
the atomic units involved in how people cognize about the source of
knowledge, the nature of knowledge, and epistemological activities (Hammer
& Elby, 2003; Louca, Elby, Hammer, & Kagey, 2004).

• Epistemological Frames are the emergent result of subsets of resources acting
in concert. Drawing from both Goffman’s (1974) sociological notion of frame
as structures of expectations and subsequent work on framing in discourse
(Tannen, 1993), epistemological frames are a participant’s local answer to the
question “what is it [specifically, what knowledge activity] that’s going on
here” (Goffman, 1974, p. 8).

Resources can frames can interact in activity settings to produce larger-scale patterns
called “epistemological coherences” (Rosenberg, Hammer, & Phelan, 2006) where
evidence from data suggests that a network of discrete cognitive units can nonetheless
give rise to stable cognition.
 A useful conceptual metaphor for resources and framing is to think about a
lecture hall with different sets of lights: a spotlight in the back to highlight a lecturer,
chalkboard lights, house lights, and a projector. Each light has an individual
brightness, but the lights are only controllable at the per-bulb level. In that sense, they
are atomic. But, light patterns interact with one another to create a field of lighting for
the room. Thus, lights are a bit like resources, and different light configurations can
correspond to different, sociologically-stable uses of the room.
Table 4 – Using room lighting configurations to think about epistemological framing

What is it that’s going on? Houselights Spotlight Chalkboard Projector
On-stage monologue Low ON Low OFF
Presenting slides Low ON Low ON
Working through equations Low ON High OFF
Students discussing with each
other

High OFF Low OFF

Watching a movie Low OFF Low ON
Cleaning the room after a movie High OFF High OFF

To convince yourself of the sociological stability of these configurations, imagine you
were watching a movie when suddenly the house and chalkboard lights came up to
full intensity. It would jar you out of the experience. You might wonder whether
something was wrong: is there an emergency? Should you evacuate?
 The metaphor isn’t perfect. Ontologically, for example, resource and framing
theory propose these constructs exist not in the world but in the minds of individuals.
But, the metaphor is quite useful for understanding how individual elements—in this

 50

case lights—can work in concert to create and sustain a stable frame. And, crucially
for a cognitive system, the metaphor lets us account for variation in activity. The
same lecture hall can become a window onto one person’s thoughts (monologue), a
site for instruction (working through equations at the board), a shared space for
collaboration (student discussion), or a place in need of repair (cleaning up) simply by
varying the intensities of lighting banks in particular ways.
 An example helps ground this in-pieces approach to epistemology. In Russ,
Coffey, Hammer, and Hutchison (2008), the authors describe the situation where an
elementary student reasons about why an empty juice box collapses when you suck
on the straw. One student gives what the authors deem to be an excellent mechanistic
account of why the juice box collapses. But, as the teacher seems to steer the
discussion toward vocabulary—in this case, “pressure”—the student clearly pulls
back from her mechanistic reasoning, seems much more diffident, and claims that
pressure is hard to explain. That example highlights the disconnect between doing
science as knowing vocabulary and doing science as reasoning mechanistically.
Moreover, it strikingly highlights that a student who by all accounts produced an
excellent explanation of how pressure works was left nonetheless with the impression
that pressure was hard to explain.38

3.3 Methods and Theoretical Commitments

3.3.1 Student population, course background, and selection
 This paper focuses on Electrical Engineering (EE) students from Flagship
State, a large public research institution in the mid-Atlantic. The students I studied
were taking Intermediate Programming, the second semester of an introductory
programming course taught in C. The course was exclusively for EE majors and
taught by EE faculty, and its enrollees were typically first-year or second-year EE
majors. Its model was two 75-minute lectures and a 1-hour teaching assistant-led
discussion section for students each week. Course topics included:

• Strings
• Pointers
• Dynamic Memory Allocation
• Testing
• Debugging
• Hash tables
• Trees
• Linked Lists
• Abstract Data Types
• Functional Decomposition

38 In fairness to the teacher, I’m trying to focus on the result of the interaction and far
less on the intent the teacher might have had. The student still left with a sense that
science might be about vocabulary, even if that’s not the view the teacher would
espouse or was trying to enact in the moment.

 51

 Students in the course had varying degrees of experience with programming.
Partly, that variation is because students with Advanced Placement (AP) Computer
Science credit could place out of Basic Programming, the first semester C course. So,
some students in Intermediate Programming came from technical magnet schools
where they may have already had one or more years of programming in multiple
languages, while other students may have been first-time programmers with only one
semester of programming experience: Basic Programming.
 I studied the same course, Intermediate Programming, during the fall 2011
semester and the spring 2012 semester. During fall 2011 I ethnographically observed
over 50% of the course lectures, and during spring 2012 I sat in on several discussion
sections. At the beginning of each semester I solicited student participants for semi-
structured clinical interviews. Of the students who responded to the solicitation, I
scheduled interviews opportunistically with students given my resources as the sole
researcher on the project. In total, I worked with a cohort of 6 students in fall 2011
and 4 students in spring 2012.
 My specific interest was in how students design computer programs. By that, I
mean I wanted to know not just how students program, but whether and how they
structured programs, how they did (or did not) try to incorporate modularity into their
programs, and how the final form of a program reflected what they had learned about
how to manage complexity through software. In the sections that follow I outline the
palette of methods I used to pursue those questions.39

3.3.2 Studying design as a complex phenomenon of disciplinary
practice

 Practicing professionals make complex use of talk, gesture, and
representational artifacts in physics (Gupta, Hammer, & Redish, 2010; Kaiser, 2005;
Ochs, Gonzales, & Jacoby, 1996); chemistry (Stieff, 2007); field biology (Hall,
Stevens, & Torralba, 2002); civil engineering (Stevens & Hall, 1998); structural
engineering (Gainsburg, 2006); mechanical and electrical engineering (Bucciarelli,
1994; Henderson, 1999); and architectural design (Hall et al., 2002; Hall, 1999).
Given that:

1. Science and engineering education research has made progress by looking for
continuities in how novice learners develop disciplinary practices (Gupta et
al., 2010; Hall & Stevens, 1995; Smith et al., 1993; Stevens & Hall, 1998),
and

2. Emerging research on software engineering reveals that early-stage software
design involves complex inscriptional, discursively, and epistemic practices,

it seems striking that there is no contemporary body of research, comparable to
studies of expert practice, that looks at students’ software design practices. In other
words, we have every reason to believe that expertise in software design involves
complex practices, but little (if any) research on what productive capacities students

39 The language in sections 3.3.2 and 3.3.3 is taken with slight modification, from
“Studying students’ early-stage software design practices,” a paper I authored, along
with William Doane, and submitted to the 2014 International Conference of the
Learning Sciences (ICLS).

 52

have for them. Finding those productive design capacities requires a shift from
questions such as how can we assess and mitigate students’ difficulty in
programming? toward questions such as how do students learn and display evidence
of design thinking in programming?
 Rephrasing research questions asked of professional software engineers (Petre
et al., 2010, p. 533) and instead treating students as designers, I ask:

• What do students actually do during early stage software design work?
• What does students’ exploratory design thinking look like?
• How do students communicate?
• What sorts of drawings do students create when they design software?
• What kinds of strategies do students apply in exploring the vast space of

possible software designs?

3.3.3 Deploying methods to capture the complexity of early-stage
design work

 The methods below form the core of my developing program to study students
as software designers. None of the methods below are new; all have been used in
prior educational research. What is new, I believe, is the opportunity to combine them
all under the umbrella of understanding what happens when students design software.
For each of the four students in my spring 2012 cohort I captured multiple streams of
data.

• I collected their code history. By this, I mean I preserved frequent snapshots
in time of what students’ code looks like. Research has already shown code
snapshotting to be a useful method for understanding large-scale patterns of
student error (Jadud, 2006; Rodrigo et al., 2009; Spacco, Hovemeyer, et al.,
2006). And, the resolution of snapshots is extremely fine: Spacco et al. are
able to capture the contents of a file each and every time a student saves it to
disk. But, that research takes an aggregate view: it identifies large-scale error
patterns at the expense of detailed naturalistic understandings of why students
make those errors. Moreover, it’s primarily used to identify what mistakes
students make, which is distinctly different from a research orientation that
considers the negative and positive consequences of students’ design choices.
A currently untapped advantage of collecting code history data, then, is that
while we historically use it to aggregate across programmers it nevertheless
also gives us fine-grained individual or team-based histories of how designs
evolve.

• I conducted clinical interviews with them. Clinical interviews have proven
historically useful in understanding the substance of students’ knowledge and
the nature of conceptual change (diSessa & Sherin, 1998; Duckworth, 2006;
Ginsburg & Opper, 1988; Ginsburg, 1997). Crucially for Computer Science
Education (CSEd) research, clinical interviews can tell us about students’
epistemologies—how they view knowledge and knowing in a discipline
(Hofer & Pintrich, 1997)—which can affect how they approach and adopt that
discipline’s practices (Hammer, 1989, 1994; Lising & Elby, 2005). Moreover,
because my interviews were videotaped and analyzed from perspectives of

 53

interaction analysis (Goodwin, 2000; Jordan & Henderson, 1995), they offer
rich evidence of the substance of students’ design practices

• I analyzed their in-interview inscriptions when they designed — what they
wrote, how they wrote it, and how those writings got used. Evidence from
both science studies (Hall et al., 2002; Henderson, 1999; Hutchins, 1995a;
Kaiser, 2005; Latour, 1990; Ochs et al., 1996) and educational research (Hall
& Stevens, 1995; Lehrer, Schauble, Carpenter, & Penner, 2000; Stevens &
Hall, 1998) highlights the centrality of inscriptions to disciplinary practice in
science and mathematics. Ethnomethdological data from studies of
professional software engineers supports the same result: inscriptional practice
is central to how professional engineers design software (Rooksby & Ikeya,
2012; Rooksby, 2010). And, since part of the inscriptional environment when
designing software is the computer itself, I captured and analyzed what
happened on-screen as students design programs.

• I paid close attention to students’ in-interview gestures. Perspectives of
gestural analysis hold that gestures can not only support or extend thinking,
they can also communicate entirely different information than what’s being
said (Goldin-Meadow, 2003). Moreover, perspectives from cognitive
anthropology and embodied cognition studies argue that bodily motion is itself
cognition (Hall & Nemirovsky, 2012; Hutchins, 1995a; Nemirovsky,
Rasmussen, Sweeney, & Wawro, 2012). For example, when students describe
a part of code by moving their hand across an imaginary row of items and
tapping each item, their bodies convey information we can interpret about
how they understand iteration.

 Figure 3-1 presents a visual overview of some of these methods and modes of
analysis. In particular, the first (top-left) panel depicts how we deploy these data
collection methods during a clinical interview:

• a voice recorder captures speech (often a redundancy in case another
recording device fails)

• a LiveScribe Pulse pen digitizes written inscriptions, allowing us to play back
what was written in time

• a videocamera records data for knowledge analysis, interaction analysis, and
gestural analysis,

• an in-interview computer tracks code history and its screen-capturing software
records real-time activity.

 54

Figure 3-1 – An comic-based overview of my methods for capturing students’ design practices

3.3.4 Developing a revelatory case of students’ early-stage design
work

 In the empirical work that follows I explore what productive knowledge and
resources students have for structuring programs. I begin with Lionel, a male student
in Intermediate Programming, fall 2011. First, I propose the idea that Lionel connects
“designerly” (Archer, 1979) stances across contexts. I analyze his retrospective
account of modifying a bike and compare it to his retrospective accounts of how he
programs in Intermediate Programming. Then I detail Lionel’s multi-stage cascading
approach to structuring a program solution in an interview. The argument throughout
is that from bike design to code design Lionel evinces knowledge and stances that
productively help him solve problems.
 Next I transition to Rebecca, first explaining the epistemological difficulty she
felt when coding, then showing how she circumvented that block by structuring a
program piece using gesture and talk. I argue that what Rebecca and Lionel have in
common are resources for handling design obstacles as they emerge. Where the two
students differ is in their in-the-moment judgments about what sorts of knowledge
and activities are appropriate to work through a design problem.
 I argue that taken together, Rebecca and Lionel constitute what Yin (2009)
calls a “revelatory case,” by which I mean my investigation arises from “an
opportunity to observe and analyze a phenomenon previously inaccessible to social
science inquiry.” In my case, I argue the phenomenon I’m observing is what

 55

engineering students do in the early stages of design work on a program. Its
inaccessibility is demonstrated by the almost complete paucity of studies that draw on
real-time (e.g., video records) of how students begin work on a complex program.
Contrary to being “representative” or “typical,” my revelatory case does not aim to
generalize. Rather, its value is in phenomenological richness. As Yin (2009) writes,
and I think others including Erickson (1986) would agree, such case studies are worth
doing “because the descriptive information alone will be revelatory.”

3.4 Lionel’s approach to design and to programming

3.4.1 While modifying a bike Lionel decomposed tasks, explained
solutions to himself, and created intermediate design
representations

 Prior to entering my study, Lionel had already earned a Bachelor’s degree in
Business Information Technology at a different university. We began the interview by
discussing why he re-matriculated to earn an electrical engineering degree.

Interviewer: How did you, um end up coming out of your business program
and your business experience and deciding that electrical engineering was
what you wanted?

Lionel: Um, well, since I was Business Information Technology, basically all
my job was doing was writing SQL code and, you know, short statements like
that. I also worked at a help desk for—I guess I worked at Department of
Homeland Security. And, pretty much besides the SQL statements I worked
with this one program and whenever somebody had a problem with it they’d
come to me. And basically that—that’s what my whole degree was—was
going down that track and then that’s really not what I wanted to do: just
sitting at a desk, you know people coming to me being like “oh, you gotta do
this for me.” So, I was like, alright. Or, I have to fix a problem for them,
pretty much. And that’s really what I didn’t want to do. I wanted to do
something more hands-on where I could, you know, I’d be given a project
where I’d do something on my own, create something on my own. And, um,
also my Dad and my uncle were both electrical engineers. And my brother
became a computer scientist. Cu—so I’ve always been around, you know, that
type of environment, where my dad’s always building something and, you
know, I always see it and I’m like, you know, that’s very interesting. I’d like
to do something like that too. So it’s really just uh, a mixture of bad
experience with my previous job and being around company that likes to do
that sort of stuff. (Interview 1 of 1, October 17, 2011)

 Lionel apprenticed building things with his father first, taking on small,
highly-directed roles in projects.

Lionel: Be-before I started my degree, you know, I really didn’t know how to
do any of this stuff. So, I would just kinda help my dad out a little bit. He’d be

 56

like “Oh, here,” you know, “to, to do this you have to do exactly this.” You
know, “solder this here,” or, you know, “drill this,” blah blah blah. He’d tell
me exactly what to do. So, I just kind of followed along. (Interview 1 of 1,
October 17, 2011)

Presumably in those projects Lionel was at a periphery and direction came from his
father. More recently, though, Lionel had struck out on projects of his own. As Lionel
said, “now that uh, my dad kinda showed me how to do certain typical types of
things, I’ve tried to become ||more adventurous|| |{air quotes}| /Sure/ and do things on
my own” (Interview 1 of 1, October 17, 2011).
 One of Lionel’s recent adventurous projects was adding a motor to a beach
cruiser bicycle. The gist of the project was simple: using a low-priced motor he found
online, Lionel realized he could mount the motor to an inexpensive bicycle and make
a motorized bike. With one exception, Lionel was solely responsible for the project
from start to finish.40 He bought the parts, he mounted the motor, and he maintained it
as a working vehicle. But, in practice the project was not straightforward. In the next
subsections I show at length how Lionel addressed the emergent challenges of
modifying41 his bike with a motor. My analysis focuses on three features of Lionel’s
story that I argue carry over to his programming approach:

1. When faced with ambiguity, Lionel worked to decompose large tasks into
smaller subtasks he could understand.

2. Throughout the task, Lionel was metacognitive about the state of his design.
His constant refrain was “how am I gonna make this work?”

3. Before committing work and materials to a solution, Lionel created
intermediate designs whose suitability he could evaluate.

I argue in later sections that these three features of Lionel’s approach—decomposing
subtasks, explaining procedures to himself, and explicitly planning prior to
committing time and resources to a final product—have strong resonances with the
approach Lionel took to while programming.
3.4.1.1 Lionel had to decompose Step 1, which simply said “Install the

Engine”
 Lionel bought an inexpensive motor online with the plan of attaching it to a
cheap bike. As he discovered, though, frugality came with a hidden cost: poor
instructions. Attaching the motor to the bike was not at all a straightforward process.

Lionel: it was funny. When I, when I got the motor /Mmmhmm/ Um, oh, it—
like I said it was like cheaply made and whatnot and it came with instructions,
but um, no exaggeration at all, step 1 said “install the engine”. And that was it.
{Laughs}

Interviewer: Huh

40 Lionel told me that the only part his father helped him with was showing him how
to use a Dremel power tool to smooth, sand, and cut edges (Interview 1 of 1, October
17, 2011).
41 Often called “modding”, for short.

 57

Lionel: And then step 2 was, um, I guess it was somethin like “put the gas
tank on.” It really didn’t tell me anything. It was kinda like “OK, those are the
obvious steps, but *how* do I do that? So I kinda had to figure stuff out on
my own. /So/ yup

Interviewer: Did it—how did it end up going? Was it a lot of trial and error?
Like, did they even have pictures of how it was supposed to look when it
/There, there/ was installed?

Lionel: There are maybe two or three pictures, but they were black and white
pictures printed out on like a, I guess like a crappy printer. So they were kinda
hard to see. Um, so I guess my first step was to go look online at better quality
pictures. Unfortunately nobody really—I was hopin to find you know, like a
YouTube video: this is how I did it.

Interviewer: Mmmhmm.

Lionel: I couldn’t really find somethin like that, so I just looked at pictures.
(Interview 1 of 1, October 17, 2011).

 Lionel recognized that having an attached motor is an obvious goal state, but
that goal state was poorly-specified by “crappy pictures” that were hard to interpret.
Moreover, the states in between start and goal were undocumented and not obvious.
Lionel’s subsequent search for materials that showed a step-by-step progression came
up empty. Faced with a poorly-specified goal-state and no intermediate guidance,
Lionel’s response was to force himself to think carefully about how he would
proceed.

3.4.1.2 In making modifications Lionel frequently asked himself “how

am I gonna make this work?”
 Faced with the challenge of interpolating between “crappy pictures,” Lionel
thought hard about what to do.

Lionel: I spent, I guess the, I guess the first five hours I just spent kinda
staring at it like, “hmm, *what* am I gonna do?” Like, “*how* am I gonna
make this work?” (Interview 1 of 1, October 17, 2011)

Ultimately, he was struggling with more than just poor instructions. Even if he did
figure out how the motor was supposed to be mounted, he still faced another problem:
the motor was designed for a mountain bike.

Lionel: I had to make a few modifications on my own. Because I guess it’s
built for uh, a mountain bike. And the tubes on mountain bikes are, y’know
like *that* thin {makes circle with right thumb and index finger}, but on my
beach cruiser there’s one tube {widens thumb and forefinger} that’s pretty
thick where I had to mount the engine.

 58

Lionel: And since the engine mount was built for a motorized bike it was
really small. So I kinda had to like devise my own plan on *how* to, y’know,
add a bigger mount.

Interviewer: Mmmhmm

Lionel: So, that was, that was my first problem. That was, y’know the first
step was to put the motor on I’m thinkin, well, how am I gonna put the motor
on if, y’know the, the specs don’t even align. So, I guess spent y’know five
hours just thinkin’, like, “what am I gonna do?”

Lionel: Finally I came up with a plan that seems to be working. So. And then,
I just kinda went from there. I’d put it together, look at the picture and say
“OK, this piece looks like that piece, and y’know I guess it looks like it
attaches that way, so I’m gonna try that.” And just put it together and, y’know
if it fit, it fit. If it didn’t, then I’d, y’know I’d be like “OK, maybe that was
wrong. Lemme, lemme work on somethin’ else on it.” So. (Interview 1 of 1,
October 17, 2011)

 Asking himself how to do something helped bring sub-problems into focus.
Within a larger mod task (viz., adding a motor to a bike), Lionel in effect entered a
nested task: modding a mountain bike engine mount to fit a beach cruiser. Modding
the mount itself was entirely undocumented, so Lionel’s solution in part was to look
for affordances in the physical structure of parts to see what he could attach.
Crucially, the environment afforded Lionel rapid, iterative feedback. It wasn’t hard to
tell when a design choice worked because “if it fit, it fit.”
3.4.1.3 Lionel used intermediate representations to consider alternative

designs
 Lionel grew increasingly frustrated as he saw how difficult it would be to
mount the motor. Crucially, part of his tactic around that frustration was to resolve to
keep trying and thinking of possible solutions.

Lionel: So, I guess I had to give myself, like a few hours just to cool down
and then actually think “OK, well maybe, you know I’ve already bought it, so,
I’m gonna continue on with it. So I had to think, you know, OK, what’s my
next step. *How* could I make this work? You know, I—I thought of a few
different ideas. You know, I’d think of one idea and think “OK, would this
work? It might, but let me think of another idea.” So I’d come up with another
idea and say, “would this work?” You know, so once I got a few ideas I would
just kind of, in my head picture it. Say, “OK, this is how it would mount, or
this is how it would mount. Which one would be safer? Or will one of these
not even work?”

Interviewer: Right.

Lionel: So, I guess after, you know, awhile of deciding which one was better,
you know, which one would be easier and safe at the same time /mmhmm/ so

 59

then, that’s when I made my decision, and just kinda, went for it to see if it
would work. And luckily it did {laughs}. (Interview 1 of 1, October 17, 2011)

 Before committing to a design, Lionel forced himself to evaluate alternatives
first. Naively, he could have gone with the first idea that came to him. Instead, even if
he thought an idea might work he pushed himself to consider others first. Then, with
a collection of possible designs he evaluated what he saw as their suitability in his
head. He applied criteria as he evaluated, trying to balance the ease with which a
mounting scheme might work with a concern for the safety of the user—in this case,
himself. Again, at least in Lionel’s telling, those steps happened before committing to
a final implementation. In other words, Lionel generated and evaluated multiple
configurations with an eye toward both the builder of and user of those configurations
before settling on a path to take.
 In sum, I note three key features of Lionel’s approach to the design challenges
of modifying his bike. First, he repeatedly asked himself “how am I gonna do this,”
forcing himself to think in terms of a plan or procedure to fill in the gaps between the
instructional pictures. Second, he proposed ideas, tried to evaluate their feasibility,
and continued pressing for alternate solutions (“would this work? It might, but let me
think of another solution”). Third, so much of his planning took place before he ever
mounted the motor. By his account, he fiddled with pieces, envisioned multiple ways
the engine could mount, and evaluated their feasibility before ever taking concrete
steps to mount the motor.

3.4.2 Lionel’s approach to programming resonates strongly with
the design stance he held when working on his bike

3.4.2.1 Lionel thinks about steps at a chalkboard
 Later in the interview I asked Lionel to compare his experiences in Basic
Programming with those he was having in Intermediate Programming. His response
revealed a great deal about how he starts projects in Intermediate Programming: he
starts at a chalkboard.

Lionel: Well, [Basic Programming] I already learned the basics of the class so
I know the basics of where to start my code. And then, obviously the projects
in this class [Intermediate Programming] are harder than last class, but I have
the basics of, “OK, well, I know how a program runs. So how can I translate
that into my program, for, for [Intermediate Programming]?” And, yeah, so I
guess I’ll sit down, like, yeah, and I’ll have like a chalkboard and I’ll write
things out, and say OK well first, you know, {sweeps hands] not even think
about the code. Just, in {air quotes} English words, so you know, my project’s
gonna do this. You know, first I need to make this calculation, then I’m gonna
print this. And then I’m gonna make this calculation. Et cetera. And I’ll sit
down and write that out, in the order that it needs to be done. And then from
there I’ll go back and think, “OK, what’s the code, to, you know, make this
calculation or print that?”

 60

Interviewer: So, when you start a project, you don’t start at a computer, it
sounds like you kinda start at your chalkboard.

Lionel: Right. Exactly. Yeah, cuz I’ve tried to start a project at a computer,
and you know I’ll write a—I’ll start writing a few lines of code, but then I just
really zone in on what I’m doing and kinda lose sight of the whole picture.

Lionel: So then I’ll write this code for, you know, this one little section of the
project, and then after I’ve done that I’ll look back and say “Oh, yeah, I need
to write the whole project,” but then this little code doesn’t actually fit into my
project, so it’s kinda, you know I guess I get tunnel vision when I start at a
computer. (Interview 1 of 1, October 17, 2011)

 For Lionel, the chalkboard is a pivotal object in his design activity. It holds
the top-down “English words” description of his program. In so doing, it serves as the
earliest durable representation of his program’s intended hierarchy and relationships.
That function is important, because without it Lionel is apt to “lose sight of the whole
picture” of what his code is supposed to do. Moreover, as the next section reveals, the
board continues to help Lionel orient his activity as he digs into the specifics of how
his program will work.
3.4.2.2 Lionel copies pseudo-code into the computer even though it

won’t compile
 As Lionel described the role of the chalkboard, I initially thought there was a
distinct separation between the chalkboard and the computer as activity objects. The
chalkboard, I assumed, was where Lionel sketched out design plans while the
computer was where he wrote code. When I probed Lionel based on my hunch, I
discovered Lionel’s activity wasn’t cleanly separable into design on the board / code
on the computer.

Interviewer: Did you, when you start thinking about the code, do you end up
usually filling it in on your board, or will you actually go straight over to the
computer and do it?

Lionel: Um, on my board, I’ll do, I guess like ||pseudo|| |{air quotes}| code
/mmhmm/ uh, you know, first on the board it would only say “this function
calls this function, this function calls this function.”

Interviewer: Mmmhmm

Lionel: So then on the board I’d write down, “alright, well this function” um, I
dunno, for instance I’ll, I’ll say you know, I’m workin with a function that
checks to make sure that it’s on the—that I’m moving *on* the board between
spaces 1 and 24.42 So then, you know I’ll write down like, pseudocode, write

42 At that point in the semester, Lionel’s class was working through a Backgammon
project, so the spaces and moves he’s referring to pertain to programming a basic
Backgammon game.

 61

“OK, well I’m gonna start. I’m gonna have a for-loop that will go from 1 to
24, and then here I’ll, you know I’ll have an if() statement that says if it’s
between you know, 1 and 24 it’s valid, if not it’s invalid.” So, that’d be my
pseudocode, and then when I actually—I’d, I’d try to write that out for the
entire program, or as much as I could.

Interviewer: Filling out the tree, you mean.

Lionel: Right, fillin out the tree. And then I’d go to my computer, so that at
least I already had a baseline of what to work with. And then, on my computer
I’d, you know I’d write out the pseudocode, I’d ac—I’d literally write out the
pseudocode, even though obviously it wouldn’t compile and actually work.

Interviewer: Mmmhmm

Lionel: So, then, from the pseudocode, as, as I read down on my computer
what the pseudocode said, I’d actually try to write the actual code that would
work. (Interview 1 of 1, October 17, 2011)

 Lionel blurred my initial chalkboard / computer distinction in two ways. First,
his overall “English words” plan of functions calling functions evolved on the
chalkboard to include computational idioms, including if-statements and for-loops.
But, then, according to Lionel, he would copy that pseudo-code as-was into the
computer, knowing full well it wouldn’t compile. These observations—that Lionel
writes computational pseudo-code on the board, then copies that same code into the
computer—may seem trivial, but I contend they aren’t.
 Because of the choices Lionel makes, neither chalkboard nor computer has a
distinct, privileged kind of syntax. Rather, “English words” and pseudo-code can
peacefully co-exist on the chalkboard, and non-working pseudo-code gets deliberately
typed into the computer before it’s expanded out into “actual code.” Put another way,
Lionel is capable of distinguishing between “English,” “pseudo-code,” and “actual
code,” but all three forms of expression are a part of his design process. It’s perfectly
acceptable for him to have something other than “actual code” exist in intermediate
representations of his design.

3.4.3 Gestural, inscriptional, and verbal in-interview evidence
reveals Lionel’s resources for structuring a program

 To probe Lionel’s retrospective account of how he programs, I gave him an
in-interview task to work on. In this section, I argue Lionel’s development process on
that task moved rather linearly through what I call a “representational cascade.”43 My
schematic for that cascade — along with the features and affordances in each layer of

43 As I’ll explain later, I think it would be a mistake to assume that all development
activity proceeds linearly and top-down in the manner Lionel’s does. Not only do I
think Lionel’s clean linearity is rare, I also think it’s not normative. So, my point here
isn’t to stress that Lionel moved linearly, monotonically through the cascade. Rather,
my point is to show that he moved between different representational levels at all.

 62

the cascade — is depicted in Figure 3. What I show here is that actually, the final
code Lionel produces is in fact one representation of a procedure that actually existed
in different forms and modalities before it became the final code in Figure 3.
 In the analysis that follows, I explore two of those modalities—verbal
description and written pseudo-code—and explain why each is crucial to
understanding the final produced code. Ultimately, I argue there is a need to explain
how Lionel creates and moves fluidly between these markedly different cascade
layers. Specifically, I attempt to answer the question of Why does he see the upper
layers (verbal code, hand-written pseudocode, and handwritten source code) as
legitimate activity? My candidate answer is that Lionel’s approach to programming is
in part stabilized by epistemological resources that allow him to treat the upper layers
of the cascade as valid, productive knowledge expressions in programming. Such an
answer is strongly in line with the findings from sections 3.4.1, where we see Lionel
deliberately making use of other intermediate design representations.

Figure 3-2 – An overview of Lionel’s representational cascade and the features and affordances
of each representational layer.
3.4.3.1 The range-finding prompt and Lionel’s final source code
 About 35 minutes into our interview, I gave Lionel the programming task
reproduced below:

Suppose you want to write a program that finds the range of a set of numbers.
So, the program would take 10 numbers as input, then it would compute the
range as the difference between the largest number and the smallest number.

How would you write such a program? (Interview prompt, October 10, 2011)

 63

The prompt was deliberately vague about certain constraints. It did not prescribe how
the program should get input (Should the programmer expect the user might type it
in, or feed in a formatted file?). It also did not prescribe how the program should
provide the result (should the programmer print the result on screen? Store it to a file?
Return the result to be used by another function?) The reasons for vagueness were in
part because I wanted to see what assumptions students might make during their
design process. Some solutions, I reasoned, might decouple the procedures of getting
input, computing range, and returning output. Others might simply hard-code a
procedure for getting keyboard-based input. I wanted to prescribe no specific
approach up front if I didn’t have to. I have reconstructed his original source code
from screen-capture footage of his in-interview programming:

 64

/* "Lionel Tribby" */1
2
#include <stdio.h>3

4
void main() {5
 int i;6
 7
 int array[5];8
 printf("Enter 5 values\n");9
 for(i=0; i<5; i++){10
 scanf("%d", &array[i]);11
 }12
 13
 int min = array[0];14
 int max = array[0];15
 16
 /*This loop compares values and sets the max and min*/17
 18
 for(i=0; i<5; i++){19
 if(array[i] < min){20
 min = array[i];21
 }22
 if(array[i] > max){23
 max = array[i];24
 }25
 }26
 27
 int Range = max-min;28
 printf("Range is %d\n", Range);29
}30

31

Figure 3-3 – Lionel’s final source code for the range-finding prompt
 Let’s explore some top-level features of Lionel’s code. First, Lionel chose to
have a user enter text directly using the keyboard (lines 9–12), and his program
displays the range result as printed text (lines 28–29). His strategy for finding the
maximum and minimum is to implement a procedure that iterates through the array of
numbers and compares the current number to the globally stored max and min.44 If

44 I think of this as a “king of the court” procedure. The current value stays on as an
extreme if and only if it beats the current “king” for that extreme. Otherwise, the

 65

the current number (array[i]) “beats” the global min (by being lower than min), its
value replaces that of the global min. Similarly, if the current number exceeds the
global max, its value replaces that of max. Before the procedure starts, Lionel assigns
the first number of the array as the value for both extrema.
3.4.3.2 Lionel’s verbal description of the program
 Lionel chose to start the task on pencil and paper. After scribbling a line about
scanning input into an array (which I discuss in a later section), Lionel stopped and
began explaining out loud to me.

challenger is replaced and the contest resumes with a new challenger until there are
no more challengers.

 66

Lionel: so I’m thinkin, my general concept is I’m going to parse through this 1
array, check each number /Mmmhmm/ and I’ll have two variables, min and 2
max, and, first I’ll set both min and max to the first variable in array, er, yeah 3
first number in array /Mmmhmm/ and, I’ll parse through the rest of the array, 4
checking to see if, 5

Lionel: Umm, you know if—I’ll s—I’ll start with max, for example. 6
/Mmmhmm/ And I’ll check to see if the number in that section of the array is 7
bigger than max. /uh-huh/ And if it is, I’ll set max to that new number. /OK/ 8
And then I’ll do the same thing for minimum. And then at the very end, I’ll 9
have my minimum and max and then I’ll just subtract ‘em. 10

Interviewer: OK 11

Lionel: So that’s my main concept. (Interview, October 17, 2011) 12

 67

 This verbal description is in some ways bound by the least stringent rules of
expression. If we’re hard-nosed about syntax, Lionel’s speech stops and starts (line 5
into line 6), which leans on the unspoken understanding that ideas in talk are under
negotiation. Stopping mid-sentence and leaving that sentence unfinished is a valid
and acceptable move in conversational space. Moreover, there is a strong mapping
between Lionel’s temporal language and the intended flow-of-control for the
program. “First I’ll set,” “then I’ll do,” “and then at the very end” all describe when
instructions will be run.
 Finally, Lionel’s instructions begin at the high level, and in some cases
implementation details are completely left out. For example, Lionel does not specify
precisely how he’ll “parse through the array.” At this stage of the cascade, it seems
sufficient for him to explain that he plans to parse through, but now how. What
Lionel does do is gesture while describing “parsing”. This gesturing, I argue, creates a
concrete representation of iteration and incrementation — the gestural marker of a
loop.

Figure 3-4 – Lionel makes a cycloid/helix gesture as he says “parse through this array”
 Contrast how Lionel specifies “parsing” through the array with how he
describes “checking” its contents. First, Lionel explains that he’ll “check each
number” (line 2), decides that he has underspecified how “checking” happens (line 5–
6), and finally makes “checking” relatively more explicit (lines 7–8). Once checking
for the maximum has been made explicit (lines 7–8), Lionel says “and then I’ll do the
same thing for minimum” (line 9). Line 9 thus becomes the verbal equivalent of a
repeated, parameterized procedure. It is, in a sense, the talk-space seed of a function.
Conversationally, both participants understand that Lionel saying, “then I’ll do the
same thing for minimum” (line 9) refers to a procedure defined elsewhere in the
conversation, not a new set of instructions.
3.4.3.3 Lionel’s pseudo-code
 Immediately following the verbal description above, Lionel begins creating
what he calls his “pseudo-code,” narrating it as he writes. There are four key features

 68

in Lionel’s talk (below) that I discuss in my analysis. Below is an overview of each
feature and what importance I think it has:

1. Lionel iterates over his initial verbal description by fleshing out some
implementation specifics — structures that further specify how something in a
program is to be done.45 This iteration is important because it suggests that his
subgoals — and criteria for satisficing them — change from one micro-
coherence to the next.

2. Reconciling what Lionel narrates with what Lionel writes reveals peculiar
mismatches. The mismatches suggests a productive capacity: that Lionel can
background certain details within a micro-coherence by omitting them from
the written code while still maintaining an understanding of how his program
will work. Put another way: the inscriptional object in a microcoherence
captures what Lionel thinks is important within that microcoherence, but the
inscription does not necessarily represent the totality of his conceptual
understanding.

3. At one point in his code, Lionel writes “same for min,” which we can
reasonably infer means he intends to repeat a procedure for calculating the
minimum. That line encapsulates the precursors of functional abstraction:
Lionel not only recognizes procedures that share the same structure, he can
background the specifics (point 2) of code he repeats.

45 It’s a limitation of my writing style that in this document I use “iteration” both to
describe aspects of Lionel’s design process and as a formal term of art in computer
science. In both cases, though, the conceptual meaning is the same: the incremental,
rule-based set of transitions to the state of an object.

 69

Lionel: So it’ll be scanf, um, and I’ll have my for-loop, and I’ll just have my int-i, and 1
I’ll go from zero uh, zero to, four actually cuz it’ll be zero, one, two, three, four, yeah, 2
zero to four. /Mmmhmm/ 3
 4
Lionel: Umm, and I’ll have, oh, up top here, to set the, right—right after the scanf 5
/Mmmhmm/, I’ll just say min and max equal the first—mm, hiccup, sorry 6
 7
Interviewer: It’s OK. 8
 9
Lionel: {laughs} the first number in the array. So I’ll say min and max equal array of 10
zero. And that’s just setting them so that I have something to compare to, I guess. /uh-11
huh/ I think that will work. Yeah. 12
 13
Lionel: So, so then, as I parse through my array of five variables, I’ll say “if min,” er 14
no, I’ll say “if array of i, you know of, of that, if, uh, the number in the array that I’m 15
looking at is greater than max, then max equals that number, array of i” /Mmmhmm/ 16
and then I’ll do the same thing, same for min. And then at the very bottom, I’ll have, 17
uh, range equals max minus min. 18
 19
Lionel: So that’s my pseudo-code, just so that *I* understand what’s goin’ on in my 20
head. 21

 70

 First, Lionel’s talk iterates over his initial verbal description by fleshing out

implementation details — programming structures that further specify how something
is to be done. Compare here how Lionel instantiates ideas of iteration in Table 1
below.

Table 5 – Comparing Lionel’s words and actions across different stages of “programming” over
the same putative section of his program. I have bolded some language-specific syntax.

Design Coherence What he says What he does
Verbal Description “I’m going to parse

through this array,
check each number”

Narrated pseudocode “I’ll have my for-

loop, and I’ll just
have my int-i, and I’ll
go from zero uh, zero
to, four actually cuz
it’ll be zero, one, two,
three, four, yeah, zero
to four.

 71

In his narrated pseudo-code, he introduces the C-specific syntax of “for-loop” and
“int-i,” which handle iteration and indexing, respectively. Moreover, he counts in
order to specify the index bounds of the loop (zero to four).
 Second, it’s actually somewhat complicated to address the question “how do
Lionel’s inscriptions align with what he says?” He says “I’ll have a for-loop”, but the
visual evidence shows that he hasn’t bounded his for-loop body in curly-braces.46 If
he had done so, his for-loop preamble would end with an opening curly brace; it
doesn’t (Table 1 graphic above). Also, for matching, his for-loop should have
concluded with a closing curly brace; it doesn’t. Nevertheless, his verbal evidence —
particularly him saying “int-i” — suggests that he understands details that variables
need to be declared. Together, these mismatches suggest that features (viz., denoting
iteration and setting its bounds) are important enough to be included in this
representation. Other specifics, including proper declaration of variables, are things
Lionel understands but does not insist on writing.47 Together, and combined with later
evidence of Lionel’s successful working program, these observations suggest that
ignoring the details is actually productive for Lionel.
 Third, Lionel’s talk reveals productive capacities for dealing with design
work. For example, he describes the guts of his program through brief perspective-
taking (lines 14 – 18 above). As a reminder, Lionel’s procedure is what I refer to as a
“king of the court” approach: if the number currently-being-inspected exceeds the
reigning champ, the champ is dethroned and replaced by the number currently-being-
inspected. But, the way Lionel articulates that process actually uses multiple senses of

46 As a language, C typically uses curly braces to bound instructions that span
multiple lines. So, a typical for-loop would be written like this, where the loop
preamble is bounded by parenthesis and the loop body is bounded by curly braces
(bolded):

 for(int i=0; i < maximum_value; i++) {
 // Do something
 }

47 One might argue that Lionel is simply being sloppy and forgetting to include
details, even though he said them. The point I’d make here is that even if he is being
sloppy, I would think it unfair to say, for example, that Lionel has conceptual issues
with declaring variables. His talk (and many later iterations of his design) suggests he
understands that declarations are necessary for working with variables in C.
Moreover, even if he is being sloppy on the particular point of variable declarations,
the overall character of this pseudo-code is still starkly different from that of the full,
working source code solution he’ll ultimately produce. So, even if we propose that
Lionel has some unintended tolerance — such as sometimes overlooking missing
variable declarations — for assessing whether his pseudo-code satisfices, there is still
strong evidence that his criteria for evaluating his work in pseudo-code stage are
markedly different from the criteria he’ll apply to later iterations of design.
no one would confuse the pseudo-code skeleton here for Lionel’s fleshed-out, fully-
working code later. So, even if Lionel meant to put them in and forgot, he still judged
this pseudocode as satisficing his subgoal

 72

“I,” where it’s at times actually not clear whether “I” means “I the programmer” or “I
the program.”48 For example, the I in “I’ll say ‘if the array of i” could very well be the
programmer, where by “I’ll say” he means “I the programmer will write a conditional
test.” But, that phrase is immediately followed by “if, uh, the number in the array that
I’m looking at is greater than max”, where I believe we may be seeing Lionel taking
the perspective of the program itself.49 If anything, the seemingly untroubled,
interchangeable use of “I” here might suggest that to do the work of programming
one can occupy a hybrid space of both being the program and being the programmer
at the same time.
 Lionel concludes this procedure with the invocation “same for min.” Picking
up the thread of hybridity, this phrase could mean, “I the programmer will write a
similar procedure for min” or “I the program will perform similar operations to
determine min.” That Lionel leaves his pseudocode there (“so that’s my pseudocode”,
line 20) suggests that whatever perspective it might be written from, this designed
artifact satisfices his pseudo-code production subgoal. And, that satisfaction is
remarkable because if “same for min” is an appropriate place-holder, it suggests
Lionel has ways of seeing that procedure as similar enough in structure to the
procedure already laid out as to not require further specification. This is an important
point: if a precursor to functional abstraction is recognizing repeated code, Lionel has
actually recognized repeated code before ever writing it. As we’ll see later, he ends
up writing this procedure out explicitly, which means that whatever answer we might
come up with as to why Lionel doesn’t abstract this to a function can’t be that he
doesn’t see the repeated computation; to the contrary, repeating core parts of the max
computation was built into his design from the start.

3.4.4 We can trace continuities in Lionel across different kinds of
design activities

 We can trace patterns in Lionel’s design activity by asking questions about the
intermediate design artifacts he creates. Specifically, we can pay attention to what
representations he creates, where they live, and how he uses them. Table 3 outlines
those relationships for the three contexts discussed: Lionel’s bike modding project,
Lionel’s retrospective account of his programming practices, and Lionel’s in-
interview work on the range-finding task. Table 3 helps support three key points:

1. There is a specific consistency to Lionel’s design activity across contexts. All
activities—given the limits of Lionel’s self-reports—involved the generation
and use of intermediate design representations. Those representations may at
times have lived in Lionel’s head, on paper, or in electronic format.

2. A thorough account of Lionel’s in-interview programming activity cannot and
should not ignore those intermediate representations and how he used them.

48 To keep your head from exploding, I remind you that the lower-case version of “i”
in Lionel’s talk actually refers to the subscript for indexing an array.
49 My point here is that technically, Lionel can never inspect an array element
himself; he can only write code that does that. You might disagree, in which case we
get to have a really fun discussion over beer about how we think programming is a
case of “distributing cognition” (Hall, Wright, & Wieckert, 2007).

 73

3. Because intermediate representations are a feature of all three design contexts,
it seems likely that what stabilizes their creation and use is tied to something
deeper or more global than just conceptual knowledge in a domain such as
computer programming.

Table 6 – Comparing Lionel’s design activity across contexts

Context /
Question

Modding the bike Retrospective
programming
account

In-interview task

What intermediate
representations
did he create?

Possible
configurations for
mounting the
engine

Relationships of
functions to each
other; pseudo-code
for how functions
would work

A verbal
description;
narrated pseudo-
code; hand-written
pseudo-code; hand-
written source code

Where do the
intermediate
representations
live?

In Lionel’s head On a chalkboard
and, later, in the
text editor

In Lionel’s talk and
gestures; on paper;
in the text editor

How did he use
those intermediate
representations?

To compare
mounting
configurations for
ease and safety

To “see the whole
picture” of a
project

To “understand
what’s goin on in
my head” when
structuring his code

3.5 Rebecca’s approach to programming
 In this section, I analyze data from a different student — Rebecca. I offer this
data as an example of what developing design expertise might look like. If Lionel’s
approach to programming uses high-level work (e.g., his pseudo-code) to cascade
down the specifics of syntax, it seems reasonable to ask whether other students use
pseudo-code in the same way. And, if they do not, it seems worth asking how uses of
pseudo-code differ and what that difference might tell us about students’ approaches
to programming.
 In Rebecca’s case, the data I’ll present begins with her stuck on the third of
four projects in the course: the “iTunes” project.50 My analysis will expand on the
following points:

1. To understand Rebecca’s struggle on the iTunes project and her approach to
programming during that struggle, we need to understand some of her prior
experiences in programming. In our fourth interview Rebecca recalls a pivotal

50 In this project, students were given a series of text files — representing the user’s
music collection — that contained formatted albums and song titles. The task was to
create a program to read in the music information, create a database representation of
it, and allow the user to transact with that database. Typical transactions might be
asking for a listing of all the albums in a user’s library or creating a playlist by
allowing the user to choose specific songs.

 74

project experience from her Basic Programming course. At the cost of hours
of work, half her codebase, and a good grade, Rebecca discovered that her
sense of how her program should work did not match what was expressible in
C. I analyze Rebecca’s recollection because it sits at the intersection of self-
efficacy and disciplinary practice. Rebecca lost confidence and felt
“demoralized” because her attempts at expressing a procedure did not match
the constructs and underlying workings of the C language. Moreover, the
fallout from that experience persisted into Intermediate Programming. By our
fourth interview she had considered dropping Intermediate Programming
entirely because of her low grades. “My *biggest* problem” in programming,
she said, “is I think I have the logic, my logic just doesn’t transfer to code. Or
I don’t know *how* to transfer it correctly” (Interview 4 of 5, April 6, 2012).

2. Rebecca has the capacity to make sense of program designs. As she tries to
understand why the instructor would prescribe an array of pointers to store
track titles in the music server, Rebecca makes progress by reasoning about
what she knows about pointers and arrays. Like Lionel, Rebecca can use
gestures, talk, and inscriptions (viz., pseudocode) to express how she might
intend for her program to work. Rebecca also has a grasp of the conceptual
issues — from a computational and programming perspective — relevant to
the part of her design she’s struggling with. But, Because Rebecca’s approach
to programming so strongly orients toward producing valid, working syntax, it
may be limiting Rebecca from seeing other ways in which she can make
progress on her design. In other words, Rebecca can do things like write
pseudo-code to plan, but she doesn’t tend toward those behaviors when she’s
stuck. I’ll offer an explanation based on epistemological dynamics to explain
why that’s the case.

 In what follows, I first present point 1 to give readers a sense of how
Rebecca’s prior experiences may inform her approach to programming. I then outline
the particular part of the iTunes project where she feels “stuck,” discussing point 2.
Before I jump into that analysis, I strongly urge readers who are not familiar with
pointers or dynamic memory allocation to refresh themselves on the subject.

3.5.1 Rebecca’s struggles on the iTunes project make sense in
light of some prior programming experiences she had

 At the time of this study Rebecca was a first-year electrical engineering major
who had gone to high school in rural Maryland. Her university courses in Basic and
Intermediate Programming were the first experiences she had doing any programming
at all, let alone in the C language. Though she felt academically at ease in high
school, a tough project in her first-semester Basic Programming course shook her
confidence in programming. In the data presentation and analysis that follows, there
are four sub-points I’d like to make about Rebecca’s development in programming.

1. Prior to the semester I worked with her, Rebecca had difficult experience
trying to understand arrays on a Basic Programming course project.

2. That difficult experience had two pieces to it that I believe relate to personal
epistemology:

 75

a. Rebecca came to feel that her idea for a solution wasn’t something
expressible in C.

b. When she got help from a friend who was “very smart in
programming,” she felt like she typed the code he told her to into her
project without really coming to understand it.

3. Reflecting on it in our first interview, Rebecca pinpoints the experience of that
array project as demoralizing and having a lasting effect on her confidence in
programming.

4. Epistemological issues continue to factor into Rebecca’s confidence in
programming. By our fourth interview, Rebecca was getting low grades in
Intermediate Programming. She had strongly considered dropping the course.
Trying to articulate her “biggest problem,” Rebecca explained that she felt
like she understood the theory behind the code examples in class but had
difficulty transferring her logic into code.

3.5.1.1 Rebecca had a difficult experience on a Basic Programming
arrays project

 In our first interview, I asked Rebecca about how her experiences in Basic
Programming compared to those she was having in Intermediate Programming. She
explained that in that first semester, she “kinda got lost on one part” — arrays —
“that was key to the rest of the year.”

Rebecca: [I]n [Beginning Programming] we had three projects, and the first
one, uh, we did—I did discuss it with other students, and we all worked
together kind of. But that one I felt much more like I had a grasp on
everything I was doing. Whereas the second project, I would stare at the code
and be like “ohmygosh, I don’t even understand what, like, it’s asking me to
do.” Like, or how to make it do what it needed to do, which was to like store
in numbers in arrays, change them, and add ‘em together and stuff. (Interview
1 of 5, February 10, 2012)

I asked Rebecca if she felt she had a better grasp by the time she turned in the project.

Rebecca: No. Cuz, there was a friend on my floor, who—very smart at
programming, he’s had like years of experience. And he gave me a lot of
pointers and tips doing it, so I felt like I was just using him a lot instead of
actually learning it, which was a downfall for me.

Interviewer: Huh. So, how, I mean. I feel like sometimes you could—you
might ask somebody for help, and then they show you something and then you
might be like oh, you’ve learned it now /yes/, but it sounds like you’re saying
/no/

Rebecca: Just, I don’t, like, I don’t blame him at all because he helped me,
but, it was kind of more of a, he showed me how to do it, I was like {mimes
exaggerated typing, in an almost singsong voice} *OK, sure, I’ll type that
code*, but I don’t really, I never really, I don’t know I never made the
connection. (Interview 1 of 5, February 10, 2012).

 76

3.5.1.2 Rebecca’s “terrible” array experience has epistemological
components

In our second interview a week later when we discussed debugging, Rebecca returned
to that experience in her Basic Programming class:

Rebecca: My array project, my—the second project we did last semester, that
I had a big error. I had to delete like half the code I worked on. Like, just cuz,
like I had said last week, I didn’t do very well on arrays. So.

Interviewer: Oh. Was it cuz of one thing, or was it like a repeated—

Rebecca: It was kind like a general, like, what I was trying to do didn’t work
with C.

Interviewer: Do you remember what it was you were trying to do?

Rebecca: I don’t know exactly, but uh, I just remember, like, whatever I was
tryin to do, cuz I had my friend help me, he’s like “you can’t do this this
way,” like, it just, C doesn’t recognize whatever I was trying to do.

Interviewer: Huh. So that was like, it sounds like it’s almost kind of a case
where your, your plain English of what should happen /yeah/ can’t actually
translate—it’s not even that you’re not sure how it’s—

Rebecca: It’s like, it was impossible.

Interviewer: It was never—

Rebecca: It was never allowed.

Interviewer: There is no word for that /yeah/ in this language.

Rebecca: I {laughs}, that was back then, so. That was always fun.

(Interview 2 of 5, February 17, 2012)

 Epistemologically, two patterns stand out in Rebecca’s recollections. First, as
Rebecca remembers it, one of her core problems was that her visions for how her
program should accomplish things were “impossible” and “never allowed” in C.
Second, in order to get past that obstacle, she ultimately typed code a friend told her
to without feeling like she understood it. As this analysis unfolds, I think these two
points give us a crucial starting point to understand Rebecca’s practice. The
experience underscored a gulf between ideas Rebecca wanted to invoke and the

 77

syntax she needed to realize them in C. And, her way of dealing with that gulf was to
make an end-run around it by taking and using code she didn’t fully understand.51
 It’s worth noting that whether her friend’s code worked to spec52 is immaterial
to the two epistemological issues I raise. First, if the code she copied worked,
Rebecca would get a good grade, but she wouldn’t understand how her project
functioned. And, if it didn’t work, she would get a bad grade and she wouldn’t
understand how her project functioned. Ultimately, no matter how the code
performed, Rebecca would likely be in a tough spot if she ever had to maintain,
revisit, or refactor the code she copied. Second, no matter how her copied-code
project functioned, it represented someone else’s articulation of how a procedure
should go. That is, the copied code was an artifact of someone else bridging the gulf
between high-level idea and articulation in C. Rebecca still found difficulty traversing
that gulf.
3.5.1.3 Rebecca’s array project experience had a lasting effect on her

confidence in programming

 As that interview drew to a close, I wrapped it up with what had become
standard protocol: asking whether there was anything else she wanted to talk about.

Rebecca: I think I’m good, I—just

Interviewer: Anything else on your mind?

Rebecca: Sorry I’m not the greatest programmer {laughs}

Interviewer: No, hey hey hey. That’s {shakes head}, first of all, I mean, um,
how come you’re apologizing?

Rebecca: I dunno. It’s a study, and I’m probably not the best test subject.
(Interview 2 of 5, February 17, 2012)

 Rebecca’s spontaneous apology spawned a discussion about why she feels
diffident in programming. For her, that diffidence traced its way back Basic
Programming. Feeling lost and stuck on that array project was more than just a tough
experience; it was a turning point:

Rebecca: When I got lost I think is when I started losing that confidence thing.
And then I never really got it back, so.

51 I say this without any intended judgment (or pejorative connotations) about what
Rebecca did. Given the assessment structure of the course, where 90% of a student’s
grade came entirely from whether the program worked to spec, she may have felt that
getting a good grade by using code she didn’t understand was preferable to getting a
bad grade with code that didn’t work.
52 Here, I’m using “worked to spec” as a shorthand for “worked in such a way that it
passed all of the input/output tests the instructor would run to determine 90% of a
student’s grade.”

 78

Interviewer: When was it you started to get lost?

Rebecca: Halfway through last semester, like with the arrays in the second
project. So…. I guess it was like, demoralizing, kind of, and, like, like I don’t
want to sound cocky or arrogant or anything, but in high school I did very
well in academics. And, so, I never really, like anything that I had to work for,
I worked for for a short period of time, got it, and like I’d understand it, and if
I didn’t, like it was really easy for someone usually to explain it to me. And, I
felt like I didn’t really get that after I lost everything on that second project, I
was like, I wasn’t able to build myself back up out of that, which probably
stems to why, not as confident in the class. (Interview 2 of 5, February 17,
2012)

 As I interpret how this array project experience may be playing a part in
Rebecca’s later approaches to programming, I stress that my analysis is about
Rebecca’s perceptions and recollections.53 It’s possible that her ideas for how her
project should work wouldn’t have been implementable in any language, let alone in
C. And, while I think that possibility is unlikely, I have to concede that I only know
what Rebecca recalled; I wasn’t present for the experiences she’s describing.
Nevertheless, the question for my research is not “can we know what really happened
in that experience?” Rather, my question is, “how might Rebecca’s image of that
experience — with its specific epistemological facets — be playing a part in her
approach to programming now?”
 Part of the answer to that question may be in her quote above. She talks about
losing her confidence and “never really [getting] it back.” Later, she says “I felt like I
didn’t really get that after I lost everything on that second project.” Because of the
peculiarities of speech, I had a difficult time parsing Rebecca’s statement about losing
everything on that second project. It wasn’t clear to me whether there was a pause
between “get that” and after, but the meaning of “that,” and in turn the meaning of the
sentences, depends on the antecedent of “that.” So what she said could have two
consequentially different meanings:

1. “I feel like I didn’t really get that. After I lost everything I lost everything on
that second project, I was like, I wasn’t able to build myself back up out of
that.” In this version, “that” may mean the topic—arrays—or the project as a
whole. I might then interpret Rebecca’s speech as saying this project was a
turning point because of the particular topic. Her being “unable to build
myself back up out of that” reflects a kind of debt that might have piled up
when later assessments depended cumulatively on that early topic. Her failure
to grasp arrays was thus cumulatively punishing because arrays formed a core
part of many projects that followed.

53 Due to deliberate study limitations I don’t have access to the actual code from that
project. To be as conservative as possible in our data collection and respect the
privacy of participants, we asked participants to grant us access only to folders that
would contain their Intermediate Programming projects. Outside code/data, including
code from prior semesters, was excluded from the scope of our code snapshot data
collection.

 79

2. “I feel like I didn’t really get that after I lost everything on the second project.
I was like, I wasn’t able to build myself back up out of that.” In this version,
“that” may mean her ready insight into topics or her facility in understanding
when friends explain them to her. The distinction I draw in this second
interpretation is “that” refers to a kind of continuity in her identity—someone
for whom school always came easy. The array project disturbed that
continuity because it was an instance in which things no longer came easy to
her. And, the experience may have been so troubling that she was never able
to re-establish being able to easily grasp things in programming. The result,
then, is that she couldn’t build herself—in the sense of her continuous identity
as one who quickly grasps school topics in general and programming topics in
particular—back up after the array project.

 Distinguishing between these possible meanings of Rebecca’s speech might
seem pedantic. But, I think the bifurcation is important for theorizing about learning
and instruction in computing. If Rebecca’s difficulty was about the topic of arrays, a
plausible narrative is that the difficulty of that concept—and the assessments that
continued to depend on it—caused a run of bad grades, and the bad grades shook
Rebecca’s confidence. But, if Rebecca’s difficulty comes from troubling her sense
that she has a ready understanding of programming, the attack on her confidence is
more complex. It’s not just that she doesn’t get arrays, it’s that she feels she doesn’t
readily understand other new code she’s seeing in the course—even code that doesn’t
strongly rely on arrays. In this view, the confidence Rebecca speaks of isn’t just a
product of getting good grades; it’s part of a feedback loop in which grades,
confidence, and a feeling of ready insight into programming are all components.
 That potential coupling of grades, confidence, and feelings about ready insight
into code matters because it further pushes the discussion toward epistemological
considerations. It is why, for example, I was paying such careful attention to
Rebecca’s recollection of copying down code her classmate told her. Instead of
helping her confidence in programming by potentially boosting her grade, the
copying may have diminished her confidence because she couldn’t understand why
someone else’s code worked.
3.5.1.4 Epistemological issues continued to interact with Rebecca’s

confidence in Intermediate Programming
 Rebecca started our fourth interview with a warning to me that she might
“rant” about programming.

Interviewer: What would you rant about? Go ahead.

Rebecca: Ohh god. Um, I am not doing well {laughs} in the class right now.

Interviewer: OK

Rebecca: And it’s not good, so. Yeah, like, we just had our last project due,
which I did a lot better on than the first project

Interviewer: Uh-huh

 80

Rebecca: Which is making me really happy. Um, but, everything about
programming just upsets me, because there’s the two guys, like I had
mentioned before who, uh, help me

Interviewer: Mmmhmm

Rebecca: Uh, one of them, he—like I worked every day from the day we got
this project on this project, and my project still didn’t turn out perfect. He
wrote his twice in one day because he lost the whole thing. And, his was
perfect. And, I dunno—it just irks me *so* bad that that, it can be that much
of a disparity between people and programming. (Interview 4 of 5, April 6,
2012)

In her telling, Rebecca wasn’t the only person upset by the relative ease with which
this student programmed.

Rebecca: we didn’t say it to him, but some of us were like, it’s, we just found
it like, so, like aggravating. Like, cuz there’s me and another girl who, on my
floor who, she’s uh, never had programming experience either—

Interviewer: Uh-huh

Rebecca: And we’re just like it gets so aggravating that it comes easy, like to
him, and that he does it well, but, that’s just—he ju—he is very good at
school. He’s very smart. So. (Interview 4 of 5, April 6, 2012)

Note here that Rebecca is connecting the idea that programming came easy to this
student to the notion that he was “very good at school.” In this moment, the statement
seems to suggest Rebecca has a fixed mindset {Dweck and colleagues} about
programming expertise. While it would be naïve to say Rebecca believed — globally
— that programming came easily to those who were “good at school,” it’s
nonetheless true she saw a discrepancy between how easy programming was for her
and her friend and how easy it was for this “very smart” classmate.
 As we kept talking about this discrepancy, Rebecca offered further evidence
that struggling with programming troubled her academic identity. In high school, she
“didn’t have to study a lot” because “a lot of things came relatively easy” (Interview
4 of 5, April 6, 2012). But, her experiences in Intermediate Programming pushed her
into a new position. As she said,

now I’m on the other end and I’m realizing how aggravating it is…. And, I
don’—I guess it’s just a shock, cuz I do not like not being good at things
{laughs}. So...” (Interview 4 of 5, April 6, 2012).

Again, Rebecca’s comments stress the frustration of feeling like programming comes
easily to some people but not to her.54 And, they are charged with emotion. She

54 Or, at least, at that moment, in that semester, it did not seem to be coming easily to
her.

 81

speaks of being “on the other end,” connoting an idea of a structure whose poles have
people who “get” programming on one end and those who don’t on the other. It’s
“aggravating” to be on that end, and a “shock” to be there for the first time.
 I asked Rebecca to reflect on whether she could ever remember seeing
classmates in the position she was now, where something seemed to come easily to
Rebecca but not to them.

Rebecca: Um. I mean, there was a—there’s a friend of mine, who, from my
high school, who, I, I mean just always got math. And, uh, she was struggling
in math a lot.

Interviewer: Mmmhmm

Rebecca: But her attitude was, uh, “I don’t need math. I’m gonna be an
English major.”

Interviewer: OK

Rebecca: So, she didn’t even care about it

Interviewer: Oh, OK

Rebecca: Whereas, like, I was like, I’m an electrical engineer major, I actually
need this. So. Like that’s the only time I think I’ve ever felt like someone’s
had that feeling that I probably did.

Interviewer: Right.

Rebecca: And, I mean I’m sure there are people that I—uh, that I didn’t know,
or didn’t realize they had that feeling. But, it’s just, interesting to be on the
other end. {6 second pause}

Rebecca: Umm. Just. Ugh. I’ve like, debated withdrawing from the class.
And, like, I’ve talked to three different advisors or whatever, and they’re like
“don’t do it. It’s not—you can still bring your—you can bring your grade up.
And even if you don’t you have freshman forgiveness,55 so.”

Rebecca, unlike her friend, couldn’t afford not to care about Intermediate
Programming; it was a required course for her electrical engineering major. But, the
combination of feelings she had—consisting partly of a feeling that programming did
not come easily to her—pushed her to think about withdrawing from the course
anyway. And, Rebecca was not in the habit of withdrawing from classes. Intermediate

55 In the interview, Rebecca explained that Freshman Forgiveness was a policy
extended to students during their first 24 credit-hours at the university. If a student
gets a grade she’s unhappy with, she can retake that course and her second final grade
will replace the first.

 82

Programming was the first and only class where she was experiencing this level of
difficulty (Interview 4 of 5, April 6, 2012).
 It would be tempting to think Rebecca struggled in Intermediate Programming
because she didn’t work hard enough. But, by her own assertions she did put a
considerable amount of effort on projects. On Project 2, for instance, she said “I
worked every day from the day we got this project on this project, and my project still
didn’t turn out perfect” (Interview 4 of 5, April 6, 2012). Figure 5 below shows
Rebecca’s activity over time from March 5, the day Project 2 was handed out, to
March 28, the day it was due:

0

100

200

Mar 05 Mar 12 Mar 19 Mar 26
date

co
m

m
its

Commit Activity over Time

Figure 3-5 – Rebecca’s compilation activity over time for Project 2. Each compile a student
initiates creates a commit, so long as there has been a change to the underlying code. The height
of each bar maps to the number of commits recorded that day. The red line charts cumulative
commits over time. The red line is steepest in periods of frequent activity and shallowest in
periods with little or no compile activity.

From the data we can tell Rebecca was compiling Project 2 code almost every day
between March 19 and March 26. Moreover, roughly two thirds of compilations for
the entire project happened in the last 3 days leading up to the deadline. So, at the
very least our data shows she was actively compiling her code for 8 out the last 10
days.
 Rebecca registered no commits between March 12 and March 19. There were
also other days for which no commits were recorded. One possible cause for those
zero values is our data collection system was faulty. A second possible explanation is
that Rebecca was not working. But, a third explanation is that Rebecca was working
but not compiling. This third explanation actually seems most plausible. It fits the
pattern of Rebecca’s work on project 1, where she wrote dozens of lines of code
before ever compiling (Interview 2 of 5, February 17, 2012). It also accounts for

 83

Rebecca’s lack of compilations despite her claim that she worked on Project 2 every
day.
 So, we can be fairly certain Rebecca was spending time on projects.56 Another
possibility for why Rebecca was struggling might be that she wasn’t studying. To
address that conjecture, we have to step back to when I asked Rebecca whether other
classes — classes other than Intermediate Programming — had ever pushed her close
to withdrawing from them. She said no.

Rebecca: the thing is, I *don’t* know how to like, study for programming.
Cuz like, I look at code and stuff, and I try, and I work every day on it, but
like, even when—I dunno, it just, does not come naturally.

Interviewer: So, what is it like when you study it? What do you usually try to
do?

Rebecca: Uhh, a lot of times, like, I’ll read through the notes we took in class,
like, cuz, what we’re doing now—we have a project, uh, we’re doing linked
lists, and like, malloc’ing data, which is, uh, *you* storing it in, as you go.
And, like, I get the theory and everything behind it, and, like it makes sense
what it does, but, I just like try and look at his code examples and stuff, and
try and replicate it, but I don’t know what’s happening right now, but it’s not
doing it correctly. I just, like, my *biggest* problem, I realized, in
programming, is I think I have the logic, my logic just doesn’t transfer to
code. Or I don’t know *how* to transfer it correctly.

Interviewer: So, um. when you’re spending time studying, um, do you spend
most of it on your computer trying to actually program or—

Rebecca: A lot of it is on my computer and a lot of it is also trying to just look
at his code and notes in class. Uh, that’s probably about split, 50/50. Uh,
because, sometimes I’ll just end up staring at my computer screen, like, “what
do I even type in to try?” So, I try and go look at his examples, so.

(Interview 4 of 5, April 6, 2012)

There are two striking features of this exchange.57 The first is that Rebecca felt she
didn’t know how to study for programming. The second striking feature of this
exchange is how Rebecca elaborated on what it might mean for programming to
come naturally to her.

56 The specific nature of what Rebecca’s work looked like on Project 2 is the subject
of the first study of this dissertation, so I don’t expand upon it substantially in this
study.
57 There are actually three striking features. The one I left out above is that Rebecca
describes malloc’ing as you storing in data. I think a great deal of Rebecca’s difficulty
with malloc specifically hinges on what she means by “you” storing it in.

 84

 Rebecca feels programming doesn’t come naturally to her because she
routinely finds herself unable to transfer her “logic” to code. As a follow-up to
Rebecca’s answer, I asked what “logic” meant to her in this case.

Rebecca: Like, like how to get the—like, if I need to get a certain data, like I
have a process of how I want to get it, I ju—and I’m like, “Oh, you would just
do this,” but can the *computer* do that? Can I—and it’s my—me being able
to tell the computer to do that is where I get lost. (Interview 4 of 5, April 6,
2012)

The tension Rebecca is describing is one I see as strongly epistemological. First, it’s
epistemological in the sense that it reflects a struggle to articulate knowledge of how
to do something. Papert (1980) and Abelson & Sussman (1996) would describe such a
struggle as a pertaining to procedural epistemology: the struggle concerns a particular
kind of knowledge work in which the goal is not to describe what is, but rather how
to. The second sense in which it’s an epistemological struggle is closer to how
Hammer, Elby, and colleagues use the word epistemological: what does students’
activity reveal about how they orient toward knowledge and knowing in a discipline
(Hammer et al., 2005; Hammer & Elby, 2002, 2003; Scherr & Hammer, 2009). In this
second sense, we can observe that Rebecca defines her difficulty in terms of the
creation of proper code. We can also pose the question “if Rebecca struggles to
transfer logic to code, what directs her activity as she tries to transfer logic to code?”

Later in the interview, she compared the iTunes project — on which she was stuck —
to Project 2.58 In so doing, she offered another telling idea about the relationship
between her logic and “syntax”:

Rebecca: Like, cuz, I guess I feel like I did a lot better on the last project
because it was so similar to stuff that I’m used to /Mmmhmm/ um, whereas all
this is brand new and I still don’t have any of the syntax down yet.
/Mmmhmm/ Like, if-statements and while-loops, they make sense to me,
whereas I’m still like, trying to grasp at this stuff.

By “this stuff,” the context of the conversation suggests Rebecca was referring to
dynamic memory allocation and malloc, which we had been discussing.
 It seems sensible to think if-statements and while-loops might “make sense”
to Rebecca because their syntactical form aligns strongly with their computational
operation.59 By that, I mean in principle the designers of C could have chosen any

58 Project 2 did not require students to use malloc() to dynamically allocate memory.
Project 3 did.
59 To borrow terminology from Sherin (2001) and rebut Saussure (1986) at the same
time, the symbol template for an if-statement is strongly connected to its conceptual
schema because we so often use everyday language in a manner concordant with an
if-statement’s branched control flow. In this instance, the relationship between
signifier and signified is the opposite of arbitrary. The similarity between the syntax

 85

symbol to represent branched control flow, but they chose a word — if — that invites
connections to its meaning in everyday speech. If-statements in C split control flow
based on a Boolean expression’s value; while-loops allow continued iteration until a
Boolean expression turns up false. Both structures have everyday analogues with
similar conceptual properties. A parent might say, “if you’re staying out past 9, let me
know,” or, “while we’re gone, can you make sure Sadie doesn’t eat anything from the
garbage?” If a child will be home by 8, there is no need to let that parent know.
Similarly, it’s reasonable to expect that once the parents return, the responsibility of
keeping Sadie out of the garbage no longer falls solely to the child.60 The point of this
observation is that Rebecca may feel certain kinds of programming structures “make
sense” not simply because they were covered in introductory programming, but
because something about their syntactical form offers an affordance for thinking
about how they work.

3.5.2 Rebecca has productive capacities for making progress on
software design work

 In our fourth of five interviews, Rebecca was having trouble making progress
on Project 3, which the instructor described as an “online music server.”61 “Like, I am
so lost, like I don’t even know where to start,” she said. We discussed why she was
stuck. Then, with my help, we began to work through what Rebecca identified as a
core cause of her confusion. In brief, the assignment contained a diagram showing the
data scheme students were required to use to store data about the music (Figure 8
below). Specifically, the scheme required an array of pointers — each entry of which
pointed to an array of characters — as a mechanism for storing data about song titles
for the music server. Rebecca’s work to resolve her confusion offers evidence for her
productive capacities in designing programs. In this section, I argue:

1. Rebecca made sense of the array-of-pointers design62 using talk and gesture.
She was able to explain both why an array of pointers should exist in C as
well as suggest candidate syntax for what might create such an array.

2. When I proposed we pretend her candidate syntax worked, Rebecca
articulated through gesture, talk, and written pseudo-code how part of her
design would incorporate that syntax.

3. After the interview, Rebecca resumed work on the project and incorporated a
version of the design she developed in the interview into her code.

for an if-statement and an understanding of what that statement does is by design,
because C itself was a designed language.
60 Some parents might object that family members should always be on the lookout
for Sadie rooting through the trash, that these parents were just emphasizing the point.
And, reasonable children might in general try to heed that. But, what makes
computers computers is their lack of qualms about abandoning any and all
responsibility to keep Sadie from the trash once the parents return.
61 Students in my study colloquially referred to this project as the “iTunes project,” so
“the iTunes project” and “Project 3” all refer to this project.
62 By “design scheme,” here, I mean the instructor-provided diagram indicating how
students were to structure their data for Project 3.

 86

3.5.2.1 Rebecca made sense of the array-of-pointers design using talk
and gesture

 The figure below shows the instructor-provided diagram for how students
should structure their data.

...
music albums (array of structures)

num_tracks

...

ID

...

album structure:

account structure:

playlist:

tracks
playlist_hits

playlist
next

... ...

user accounts (linked list)

album
track_num
next

playlist structure:

Figure 1: Recommended data structures for implementing the on-line music server.

integer that specifies the number of tracks contained in the album. The “tracks” field is
a pointer to a pointer array that holds the title of each track. The pointer array contains
one pointer for each track in the album, so it has “num tracks” entries. Each pointer in
the pointer array is a pointer to a character array that holds a string containing the track
title. Lastly, the “playlist hits” field is a pointer to an array of integers, one per track
(so there are “num tracks” integers in this array). Each integer in this array records the
number of users that have included the corresponding track in their playlists.

Figure 3-6 – The instructor required students to use this data arrangement for storing
information in the music server. The scheme uses an array of pointers to represent the track
names of an album.

Rebecca would have seen this diagram before because the project assignment was
given out 11 days prior to our interview. But, the data I present is the first time I had
any access to how she was thinking about it.
 At the time of the interview Rebecca felt stuck on handling issues with music
albums — the top-left and top-right structures depicted on the diagram. The
assignment required that “all of the data structures described [in this diagram]”,
including music albums and all of the data they referenced, “must be allocated
dynamically” (Instructor-provided Project 3 description). So, Rebecca and I started
discussing what parts of that scheme she understood. Table 3 below presents what she
said and what she did while beginning to explain her understanding.63

63

 87

Table 7 - Rebecca describes an array of structures using gestures (Interview 4 of 5, April 6, 2012)

Rebecca’s gestures create a kind of virtual object that looks much like the music
albums array in the diagram. As she chops out spaces for each of the “characters,”
those spaces are in series and fit — more or less — within the larger area she
bounded with her when she said “to malloc the array.” The spatial subdivision is key
because it offers supporting evidence that in some way, Rebecca might have been

What she says What she does

Like, the—the thing that makes sense to
me that I, uh, got right now, is that, to
malloc the array, to {bounds a wide
space with her hands} make the array a
certain length, do that.

And then I know that each of the {chops
out three invisible boxes in the air} I
guess nu—characters—I—uh, I’ll call
‘em characters.

Like, each of the spots in the array holds
a structure and each of the structures
holds three things.

(gestures obscured by the
computer)

 88

thinking about the album structures themselves as being contained in or by the array.
And, that spatial containment metaphor resurfaced later when we discussed the array
of pointers, which I’ll get to in a moment.
 As Rebecca explained her understanding to me, I took to writing down what I
understood her to be saying on paper:

Interviewer: OK. So you have, so here’s what you just said. You said {writes}
“malloc the array” um, “each element has a structure,” and then “each
structure has” you said—

Rebecca: Has three parts

Interviewer: OK. Has three parts. OK.

Rebecca: Yeah. So, and the first part I can do ‘cuz it’s an integer {laughs}.
The first part is just the number of tracks on the album. So—

Interviewer: Oh, oh. So, of the three parts [[I’m sorry

Rebecca: Yes]]

Interviewer: I [[{untillegible}

Rebecca: Oh yeah, sorry]]

Interviewer: So you’re saying, um, and then—and then this is number of
tracks, which is an integer, right? /yeah/ OK (Interview 4 of 5, April 6, 2012)

Figure 9 below shows what I wrote as we worked:

Figure 3-7 – I write down what I understand as Rebecca explains the overall data structure of
albums to me
It wasn’t the first time — either in my series of interviews with Rebecca or in that
interview in particular — that I tried to write down what she said. But, I highlight it
here because it became part of my activity as we worked together in this episode.
Rebecca would articulate something, often through talk and gesture, and I would try
to write down and offer back to her what I understood her to be explaining.
 As we continued, we landed on trying to understand the “tracks” portion of
the album data structure. Storing tracks was where Rebecca felt she was getting
“lost”:

 89

Table 8 – Rebecca says gets lost on the array of pointers pointing to track names (Interview 4 of
5, April 6, 2012)

What she says What she does
Rebecca: And, the next one is
where I get lost, on the tracks
part. Because it’s a pointer {2
sec pause} to {hands make a
vertical cylinder in front of her;
note that the array is represented
on the assignment as a narrow,
vertical rectangle}—

it looks like another array that’s
||pointing|| |{left hand crosses
from her left to right, at chest
height, index finger extended in
the direction of motion; this is
the same direction (from
Rebecca’s perspective) in which
the pointer array on paper points
to each track name}| to the
names.

Rebecca’s gestures for the array of pointers again spatially mimic the depiction of the
array on the page: a vertical cylinder. The reason I note the orientation of her array
gestures is that for practical purposes arrays as represented by bits in C have no
orientation in space that the programmer could know, much less care about. An array
cannot be parallel to the ground, nor can it be oriented toward the ceiling.64 But, the
assignment depicted the album array as horizontal, and so too did Rebecca’s gestures

64 The computational hardware representing the array does have an orientation in
space, but that’s clearly not what is at issue here. The whole point of the array is to be
an abstraction away from the soldered transistors, capacitive plates, flipped switches,
vacuum tubes, tinker toys, or other physical means that store the state of the array.

 90

for it. The assignment depicted the pointer array as vertical, and so too did Rebecca’s
gestures for it. In other words, the observation that Rebecca’s gestures align with the
assignments pictures might suggest that she is doing more than thinking about arrays
in the abstract. Rather, some elements of the representational features of the page
have made their way into her activity and, arguably, her cognition.65
 Rebecca continued on to try thinking through why an array of pointers was
part of the design.

Rebecca: But, I’ve always been confused as to why you—I guess, I always—I
was always like, when we learned pointers, I was like “why do you need
pointers when you could just call it the name? Why do you need two names
for it?” But, I think, what—at least what I’m seeing here maybe is like, this is
just another array /Mmmhmm/ because you can’t put more than one character
in each element of the array, so that is just an array of pointers that point to
strings. And the strings are the names.

Rebecca: So, that would make sense. So you would—the tracks would point
to the array, and so you could do the pointer of that {1.5 sec pause} The
pointer to the array, an array—the array of like 1 would be a pointer to track
1’s name.

Interviewer: Mmmhmm

Rebecca: So. OK, so—see that part makes sense now. I just—no idea how I
would ever access that. Or, store it, I guess, is the better word. (Interview 4 of
5, April 6, 2012)

What “confused” Rebecca has an understandable origin. Most of the work she would
have been doing until that point would have used named variables. For example:

int age;
float weight;
char *name;

If age, weight, and name are already-named pieces of data, why would something
ever need to refer to them indirectly? It would be as if we had to call me “The second-
born son of the second-born daughter of Henry” for some reason. I already have a
name. Why do I need another name that uses the names and relationships of my
forebears to refer to me when historically my given name has perfectly fine for all
referential purposes?

65 One could argue that gesture is possibly just undirected flailing, and that the
correlation between Rebecca’s gestures and the page is weak at best — the sort of
thing you’d expect to happen some percentage of the time anyway under the
assumption that the pictures on the page have nothing to do with how she’s thinking
about it. I concede that it’s possible the correlation isn’t structurally meaningful. But,
I think the correlation is meaningful given how many other times her gestures align
with canonical written representations of computational structures and processes.

 91

 Rebecca’s way of finding sense in pointers was to observe that you can’t put
names — each of which is defined as an array of characters — into an array because
“you can’t put more than one character in an array.” To verify I was understanding
her idea correctly, I tried to restate it:

Interviewer: OK, so you were saying the reason you—when you’re tryin to
convince yourself like—you originally you were thinking “why don’t you just
put all the names [[here

Rebecca: Yeah]]

Interviewer: And you were [[saying the reason is

Rebecca: saying, no]]

Interviewer: because==

Rebecca: ==That makes sense now. Yeah, you can’t put more than one
character in an element. And, it’s a whole name of a song, so you would need
to point—that element would just {gesture obscured by my laptop} be a
pointer to a name. OK. (Interview 4 of 5, April 6, 2012)

 The latching and overlapping turns of talk above offer strong evidence that
Rebecca’s explanation aligned with my interpretation. And again, notions of
containment come into play. Rebecca says, “you can’t put more than one character in
an element” in part because you’re talking about “a whole name of a song” (my
emphasis added here). If Rebecca has a capacity for thinking about the canonical
concept of type-restrictions on arrays, it’s manifesting here as a part-physical
metaphor, evoked through both talk (the quote above) and gesture (Table 4), in the
service of making sense of a design decision.
 As she continued, Rebecca discerned that because the input data contained the
number of tracks on each album, she could use that number to define how long the
pointer array needed to be. But, something was still troubling her.

Rebecca: So. {4 sec pause} That would {6 sec pause}

Interviewer: What’re you thinkin?

Rebecca: Just that, um, I’m just tryna think, cuz like that makes sense, but I
don’t know how to get to that. Cuz, how do you make a pointer point to a
random array that you just made? Uh, I guess {4 sec pause}

Rebecca: Uh, p—the pointer syntax I need—I would need to go back and look
at them because now you have an array, each array—my issue—cuz like now
that makes sense. Like, it’s just how do I get to that point of making that
work?

Interviewer: [[So

 92

Rebecca: And this is what]] I mean by my logic /OK/ I get the logic and the
theory behind it but I don’t know how to actually put it into C.

Interviewer: OK, so in other words, what makes ||sense|| |{air quotes}| to you
know /Mmmhmm/ that I guess didn’t before is that *that* {gestures to the
instructor’s structural diagram on screen} is a—that’s an understandable
arrangement /yes/ for the data

Rebecca: Yes.

Interviewer: But then, how do I [[make it

Rebecca: make it]] Yeah {nods}. (Interview 4 of 5, April 6, 2012)

When Rebecca said “I don’t know how to get to that,” I take “how to get to that” to
mean how to write the code for that procedure. We had just agreed that design-wise,
she could use a number provided in the input data to define the length of the pointer
of array. But, she was stuck because of her difficulty translating the “logic” we
developed into code.
 From the outside, what Rebecca and I had done together was something I
think crucially important to the design of a program. We worked to understand how
someone else chose to structure their data.66 We tried to decide for ourselves whether
and how those structures made sense. Along the way we created ephemeral objects of
that sense-making in the form of talk and gesture as well as the durable artifacts of
my inscriptions. But, none of that work resulted in C code.
 For Rebecca, the lack of certainty about how to make our ideas in C code was
a marked concern. And, again, that concern makes sense. We had just convinced
ourselves that we could understand why an array-of-pointers. We even figured out
how we could use the input data to provide the length of the arrays we would need to
make. But we had not laid out how to declare the array and preserve a reference to it
(“how do you make a pointer point to a random array that you just made?). Without
that piece — a piece Rebecca was unsure of and felt she would need to look up — our
solution clearly wouldn’t work.
 Absent that piece, Rebecca tried thinking of possible ways to fill in the
missing syntax.

Rebecca: Cuz, I’m like, like I’m trying to think right now of things that I
would try /Mmmhmm/ but I don’t know what I would try first because, all I’m
thinking right now is that I know tracks is going to be a pointer. /Mmmhmm/
So you make that a pointer.

Interviewer: OK.

Rebecca: But I’m not sure where it would point to, because you don’t have
that array made yet. So I {3 sec pause} so you’d have to, I guess you could

66 That the “someone else” was in this case the instructor is important for larger
power dynamic considerations.

 93

make the array, and then make it point to the array, but {3 sec pause} Cuz you
have to make an array of pointers.

Interviewer: Mmmhmm

Rebecca: And I don’t know how to do that. Because I’ve made arrays of
characters and integers and stuff before /OK/ but never pointers, so.
(Interview 4 of 5, April 6, 2012)

Rebecca was seeing a temporal problem: how could she reference an array that didn’t
exist yet?67
 Rebecca started exploring ways to solve that problem of getting tracks to point
to the array of pointers.

Rebecca: But I’m not sure where it (tracks) would point to, because you don’t
have that array made yet. So I {3 sec pause} so you’d have to, I guess you
could make the array, and then make it point to the array, but {3 sec pause}
Cuz you have to make an array of pointers.

Interviewer: Mmmhmm

Rebecca: And I don’t know how to do that. Because I’ve made arrays of
characters and integers and stuff before /OK/ but never pointers, so.
(Interview 4 of 5, April 6, 2012)

Rebecca landed on a potential solution: make the array first, then make tracks point to
the array. But, with that solution came another problem: how do you make an array of
pointers?
3.5.2.2 Rebecca could propose candidate syntax and build pseudocode

around it.
 Rebecca came up with an idea to create an array of pointers, but she wasn’t
sure if it would work.

Rebecca: if I were to d—when I declared the array, if I were to—I dunno if
you even can, like, whenever we—we do ints, and then it would be like star-p
/Mmmhmm/ and then star-p would be the pointer /ok/ I don’t know if you can

67 As a crude analogy, imagine trying to write your own will. If you think forward in
time, you might later have children to whom you’d like to bequeath your assets. But
how can you enumerate those children in the will now, before you’ve had them? You
need your will to refer to something that does not exist at the time you write the will.
Extrapolating forward and rather ludicrously, we could imagine you are always
capable of producing children. So, up until the day of your death, there is always the
seeming risk that your will might need to refer to a beneficiary who does not yet
exist. Recognizing this subtle problem as Rebecca did is an act I consider to be sense-
making, even though she as-yet still did not have a solution.

 94

do like int star-p ||bracket-bracket|| |{makes square brackets with hands}| and
that would be an array or not.

Interviewer: [[OK

Rebecca: But I don’t know]] if you can do that.

Notice what’s happening here. Rebecca is taking patterns that she knows work:

int age; // creates an integer variable called age
int ages[35]; // creates an array called ages,
 // 35 integers long
int *p; // creates a pointer-to-an-integer;
 // said pointer is called p

and considering a pattern that might work:

int *p[35]; // Rebecca is not exactly sure what this will do

 Notice further that in this exchange, Rebecca wondered “if you can do that.”
Determining the referent of that was, again, consequential. One possibility was
Rebecca meant “int *p[35]” might not be the proper syntax for creating an array of 35
pointers-to-ints. If so, Rebecca was struggling with her aforementioned problem of
not being able to translate her logic to code. Another possibility was Rebecca meant
“I don’t know if there exists any syntax in C to create an array of pointers.” So, I
followed up on this latter interpretation. We both agreed it should be possible to
create an array of pointers, it was indeed just a question of whether that syntax
accomplished it (Interview 4 of 5, April 6, 2012). So, that left the former
interpretation: it looked like Rebecca was unsure how to “transfer her logic to code.”
 We both agreed creating an array of pointers should be possible. So, I asked
Rebecca to suppose her candidate syntax worked. She readily agreed.

Interviewer: OK. So then, um, what if we just pretended for a minute, that
that, like==

Rebecca: ==That that works==

Interviewer: ==That that worked==

Rebecca: ==OK==

Interviewer: ==OK. So then, um. {begins writing} So then you might write
like to make an array of {stops writing} actually what would we call this?
This is==

Rebecca: ==array of pointers, I guess==

Interviewer: ==OK. {under breath} ||pointers|| |{writes “pointers”}|. It’d be,
well. So. The—the one we had was like ||int, star p, um, it would be some

 95

number|| |{writing}|, um, and I guess that’d be it in order to just declare /Yes/
that right? OK.

In this exchange note every turn boundary is latched. Once I bid for pretending,
Rebecca accedes. When I’m unsure what to call the array, Rebecca finishes my
sentence. Rebecca rapidly approves the final product before I even finish my last
sentence. Figure 10 below is the syntax I wrote in the exchange.

 If that syntax created the array-of-pointers, the next challenge for storing track
names was how to access elements in array-of-pointers. Figure 11 presents the
pseudo-code Rebecca ultimately wrote to scan in and store track names.

Figure 3-9 – Rebecca’s pseudo-code for scanning in and storing track names

The next section will show the rich talk and gestures that accompanied Rebecca’s
generation of this pseudo-code. I argue activity in the form of gesture and talk
constituted and sustained Rebecca’s in-the-moment approach to programming.
3.5.2.3 Rebecca’s talk and gestures constituted and sustained her in-

the-moment approach to programming
 Throughout this section I detail the speech and gestures that accompany
Rebecca’s pseudocode production. Along both modalities I saw evidence of a marked
shift in Rebecca’s orientation. It was a shift from being hunched, silent, thinking over
the keyboard to being animated, open, and gestural toward me. It was also a shift
from seeming diffident, uncertain, and hedging in speech to seeming confident,
assured, and able to dispatch my questions. Taken in their totality across the episode,
these subtleties constitute evidence of an approach that strongly differs from those
Rebecca had when discussing her struggles in the course (section 3.5.1).
 First, Rebecca suggested she could write the pseudo-code as we talked.
Table 9 – Rebecca starts talking out pseudo-code and asks for the pen to write it

What she said What she did

gure 3-8 – The candidate pseudo-code Rebecca dictated to me for declaring an array
f pointers

 96

Uh, well, what I was think—like if I
wanted to like, ||save it|| |{pinches right
hand, thumb and index finger a few
inches apart}| or whatever, /Yeah/

I could make a while loop, ||scan in the||
|{drags hand across the table}| —scan in
the data from the album, /OK/
{interviewer begins writing} uh, which
is, [[I can write it if you want

Rebecca then took the pen and started describing her thinking while she wrote.

 97

Table 10 – Rebecca’s verbal/gestural overview of looping through the input track titles
(Interview 4 of 5, April 6, 2012)

Panel # What she said What she did
1 And then my

thinking at least, is
you should be able
to, um, say that
“star p of i”
/mmhmm/ equals,
uh, the title, and then
you just do i++, so
then it’ll ||move to
the next one||
|{makes looping
gesture with left
hand}| /OK/

2 and you just keep
||saving each of the
pointers|| |{left hand
makes horizontal
chops in the air, like
rungs down a
ladder}|

3 in the array ||to a
title|| |{right hand
makes pinching
motion, left-hand
points to it}|

 98

4 ||And|| |{right hand
makes a large loop
counterclockwise
(from Rebecca’s
perspective)}|

5 ||you just increment

by 1|| |{right hand
makes a cycloid to
her right, in a plane
parallel to the back
wall, like counting
dots on a line}| until
you reach the end of
file.

“Like, that would make sense to me,” Rebecca said. I asked whether the while loop
would get a fresh line of text when it runs again.

 99

Panel

What she said What she did

1 Yeah, because]] uh,
||what the while loop
does|| |{pinches right
thumb and forefinger}|

2 ||is it reads in the line||

|{right hand, palm down,
chest height, slides out to
the right}|

3 and then ||once it

reaches|| |{right hand
rises, lowers in a chop}|

 100

4 the end of ||character
it’ll|| |{right hand rises,
swoops down in a
crescent, index finger
extended, looping back
up}|

5 go back down—it’ll ||do
the while loop|| |{right
hand moves back down
toward table}| ||and then||
|{right hand moves back
up above shoulder-
height, palm-down}|

6 ||go back|| |{right hand
creates a loop down and
back up}| down to the
next thing—line,

7 it’ll ||read in the line||
|{right hand scans
rightward at shoulder
height}|

 101

8 ||until it|| |{pinches right
thumb and forefinger,
swipes right hand back
to the left, palm down}|
reaches the end of file

In panel 4, notice that Rebecca’s gesture of swooping back actually precedes her
saying “go back down.” In other words, her body articulates the idea of cycling back
before she actually speaks it. A similar argument could be made for panel 8, where
Rebecca’s gesture for a process hitting the bottom (hand swooping and hitting an
inflection point) precedes her saying “reaches the end of file”
 I tried to sum up my understanding of Rebecca’s description:

Interviewer: So as you step through this loop /mmhmm/ {points to i++} i
keeps going up by one==

Rebecca: ==Yes. (Interview 4 of 5, April 6, 2012)

As I thought about that, Rebecca continued explaining and gesturing:
Table 11 – Rebecca concludes her visual and gestural explanation for scanning in track titles
(Interview 4 of 5, April 6, 2012)

Panel # What she said What she did
1 And the ||lines keep

going down|| |{left hand
horizontally chops the
air, creating “ladder
rungs”}|

(Gesture partially obscured by computer)

2 so, ||that way,|| |{left
hand raises up to her
head, palm down and
parallel to the table, and
it is replaced by right
hand, index finger
extended and pointing
to her left}|

 102

3 ||the first line|| |{right
hand scans across to her
right}|

4 is going to ||be|| |{right

hand rotates to become
pinched thumb and
forefinger, palm out}| ,
||uh the p—|| |{right-
hand wiggles}|

5 element zero /OK/ uh
||the second|| |{hand
swoops slightly up, then
curves down and locks
in in a position below
the prior one}| one’ll be
element one

3.6 Conclusion
 In pulling together concluding ideas, I revisit the points I established at the
end of section 3.1.

3.6.1 Students’ early-stage design activity reveals patterns
outside the explanatory scope of (mis)conceptions accounts

 Lionel’s strategy of working at a whiteboard, keeping himself at a top-level of
planning, and copying pseudo-code into a computer isn’t explained by appealing to

 103

“concepts” in computer science, which in many research accounts are simply
mappings of content in computer science curricula. I demonstrate this gap in
Appendix 4, where the “conceptual features” of Lionel’s code reveal little (if
anything) about the resources involved in Lionel’s design process.
 Rebecca, in a similar fashion, has lots of productive knowledge for thinking
about arrays (section 3.5.2), but at the time of the interview none of her code reflected
that knowledge. Moreover, Rebecca was able to sense-make (Danielak et al., in press)
about an array-of-pointers design, where her sense-making was again a complex
activity that would be poorly accounted for in CSEd frameworks that appeal to
misconceptions. In Rebecca’s case, the situation is particularly paradoxical if we
consider conceptual knowledge about a topic to naively be something students have
or don’t have.
 Suppose Rebecca had the requisite conceptual knowledge for thinking about
an array of pointers. It’s a puzzle, then, to explain solely via conceptual knowledge
why she was so frustrated with programming and felt stuck when she began Interview
4. Why hadn’t the knowledge she possessed—relevant to solving the problem at
hand—manifested already some way? Why was she stuck?
 The alternative is to assume that as of Interview 4 she didn’t have the
conceptual knowledge for thinking about the problem at hand. But, that doesn’t make
sense either. If Rebecca didn’t know how to think about an array of pointers, why was
she able to do it so well during the interview? Both possibilities—that either Rebecca
had or did not have conceptual knowledge about an array of pointers—lead to fairly
non-sensical conclusions under naïve have/don’t have assumptions of conceptual
knowledge. Yet, again, the majority of conceptual knowledge research in CSEd today
is silent on the issue of degree when it comes to conceptual knowledge: students
either have a mental model that matches canonical function or they don’t.

3.6.2 Rebecca had epistemological resources to support expert-
like practices, but she framed those practices differently

 Consider these summative statements made by Lionel and Rebecca on how
they use pseudo-code in their work.
Table 12 – Comparing Lionel’s and Rebecca’s views toward pseudo-code

Lionel Rebecca
“on my computer I’d, you know I’d write
out the pseudocode, I’d ac—I’d literally
write out the pseudocode, even though
obviously it wouldn’t compile and
actually work.” (Interview 1 of 1,
October 17, 2011)

“So, I can’t just type in “if the white
piece reaches in,” I—the, the C language,
I guess, putting it in those, their terms,
their terminology into programming
language.” (Interview 2 of 5, February
17, 2012)

As illustrative examples, they capture a fundamental difference in practice between
Lionel and Rebecca. Lionel worked in pseudo-code on his computer, even going so
far as to copy it into his source-code files despite the fact that it “obviously wouldn’t
compile and actually work.” Rebecca also wrote pseudo-code, and she even wrote it
into her source code files. But, her local sense of the activity of writing pseudo-code

 104

was different. It came to represent a discontinuity with the final code she was trying
to write because there was nonetheless a gap between writing in English and writing
C in “their terms.”
 These diverging stances take the same practice—in this case, pseudo-
coding—and situate it within a different kind of epistemological coherence. For
Lionel, the coherence associated with pseudo-coding is productive and optimistic.
Copying non-working pseudo-code into the computer is, in a colloquial sense, all part
of the plan. It’s a legitimate step toward creating a final working program and,
crucially, it reflects his own understanding of what’s supposed to happen in his code.
For Rebecca, by contrast, writing pseudo-code is a fallback. Pseudo-code is what she
writes “if I know what I want to put underneath of it,” by which she means if she’s
not sure how to flesh out a loop or other control structure. Rather than being part of a
planful coherence, the practice of pseudo-coding for Rebecca gets triggered as part of
a stopgap coherence; a contingent measure at times associated with a kind of
diffidence.
 Crucially, Rebecca has intellectual resources for pseudo-coding. Moreover,
her practice of writing pseudo-code to flesh out a loop is the plausible beginning of
“method stubbing,” the process by which one might defer implementing the guts of a
function and instead create a simple stopgap. For example, the function below will
always print 28 Fahrenheit, which is fairly useless as far as temperature-getting
functions go:

getOutsideTemperature <- function(sensor) {
 print(“28F”)
}

But, the advantage of having something in the function body, no matter how trivial, is
enormous. Now, because getOutsideTemperature is defined and takes arguments,
other functions can safely call it. It also offers a diagnostic output—by printing “28F”
out—that we can rely on if we ever need to make sure the function was called. At the
time of creating getOutsideTemperature, a programmer may have no idea how the
temperature will be obtained but will nonetheless need to be able to write code that
depends on it getting the temperature. Stubbing is, in such cases, a highly productive
thing for a programmer to be able to do. But, stubbing is as much a strict practice as it
is an epistemological move, because it represents a decision that an entity-to-be-
known can be, for the moment, underspecified so it can be incorporated into a system
before its behavior is defined.
 Rebecca is already capable of simple stubbing. It’s part of an epistemological
coherence that’s triggered when she doesn’t know how to flesh out a control
structure. So, from a constructivist standpoint (Smith et al., 1993), she has knowledge
of something that can be further refined into software engineering knowledge. Indeed,
much of the surrounding data from Rebecca suggests that she would have been served
well if an instructional intervention had taught her some simple ways to stub out
functions so she could call them even if she hadn’t defined their bodies yet. To my
knowledge, she was never exposed to stubbing formally, which is unfortunate
considering how much it might have led to improving her confidence in
programming.

 105

 Lastly, consider Rebecca’s episode in reasoning about an array of pointers
(section 3.5.2). As I show, Rebecca clearly had resources for reasoning about the
sensibility of an array-of-pointers design and for predicting array-of-pointers syntax
by extrapolating from patterns she had seen before. And, when I explicitly suggested
that we suppose a candidate syntax works, Rebecca was able to fluidly articulate the
procedure she would build around that syntax (section 3.5.2.3). Rebecca knew things,
but her knowledge was deployed in such a highly contextual way as to be sensitive to
what kind of knowledge-activity she thought she was supposed to be doing. It’s thus
sensible to model that set of phenomena from an epistemological standpoint, rather
than a strictly conceptual one. Rebecca had certain kinds of knowledge, but part of
my in-interview intervention was to establish a frame where supposing syntax worked
was a valid part of programming. Once we mutually negotiated that frame there was a
strong microcoherence of Rebecca stably explaining her code. But, crucially, my
intervention wasn’t about introducing conceptual content but rather establishing a
kind of knowledge game—supposing—that one could play as part of programming
design.

3.6.3 Students displayed a diversity of approaches to
programming in the moment

 The diversity of programming approaches I saw students take is far greater
than just the space spanned by Lionel and Rebecca. Within and across my data, I
continually observed students saying and doing things that not only distinguished
them from each other, but constituted phenomena I haven’t seen described in prior
CSEd research. I saw students employ clever tests for debugging, create their own
makeshift debugger, and discuss at length whether certain programming constructs
represented natural ways of thinking. For illustrative purposes, I’ll discuss three such
examples. While I don’t analyze them at length, I include them here as proof of
principle of the kinds of phenomena we’re not currently capturing that nonetheless
have a strong effect on students’ programming approaches. Moreover, these “in the
wild” (Hutchins, 1995a) practices are further evidence of the kinds of knowledge that
could be further refined into student expertise (Smith et al., 1993). So, not only do our
research accounts miss these kinds phenomena, by missing them they preclude
research and practice from building off them.
3.6.3.1 Isaac used a thoughtful debugging strategy that code snapshots

alone could never capture
 When Isaac was debugging an error in his checkers game code, he made use
of a clever test to discover he had reversed array index subscripts. He had become
uncertain about which of the two subscripts corresponded to what he thought of as the
x-coordinate on the board and which controlled the y-coordinate. So, he took a piece
whose x-y position he knew and instructed his program to print it as a “7” on the
board. Then, he told it to increment the first index of that known piece by 1, leave the
second index alone and print the resulting piece on the board as “8”. Finally, he told
his program to increment the second index of the known piece by 1, leave the first
piece alone, and print the resulting piece on the board as “9”. By inspecting the visual
output, Isaac could tell which subscript controlled which position because he knew
where 8 and 9 were relative to the unchanged 7. When he reflected on his work in the

 106

interview, he explained that what was tricky was realizing that the coordinate system
for the checkers board didn’t work the way standard coordinate systems in math
worked; in the checkers program the indices were reversed.
 Because Isaac had been set up as a code-snapshot participant, we have a
snapshot record of his work for that portion of the interview. But, the only snapshot-
visible changes are the reversal of the indices and the accompanying test cases. The
narrative surrounding Isaac’s particular debugging text, including his reflection that
coordinate systems in programming are “trickier” than those in math, is entirely
invisible to the snapshot record. If I hadn’t interviewed him I never would have
captured it.
3.6.3.2 Dana created her own debugging environment
 Dana was working on her checkers program and needed to debug some errant
behavior. In class and in discussion students had been exposed to the GNU Debugger
(GDB), so in the interview I asked Dana if she’d like to use it. She said she didn’t feel
comfortable using GDB. Instead, using my MacBook, Dana decided to create three
separate instances of a terminal. In one instance, she had her checkers program source
code open. In the second, she had the source code for a set of test inputs she was
developing to try to pinpoint the error. The third window was dedicated to compiling
and running the code. Since the program was designed to print an ASCII (text)
representation of the board at each turn, the dedicated program window was Dana’s
visual output for which pieces were where at any state in the game.
 The important finding from this episode is how Dana deliberately structured
her environment to support her activity. At the lowest level, she could have tried to do
everything in a single terminal window. But, if she did that she’d have to constantly
switch contexts. Because students in the course used a terminal version of emacs, she
had no easy way to simultaneously view her code while compiling it. GDB would
have been in many respects the right tool for that problem: it would let her set
breakpoints, step through iterations of code, and inspect variable values as she did so.
But Dana chose not to use GDB.
 Instead, Dana exploited the fact that Terminal.app on Mac OS X 10.7 can
have multiple instances of itself open at the same time on the same screen. With three
terminals running, she could persistently have her source code visible and executing
at the same time. With one glance pattern she could move from the board’s visual
output to the test to the program source and back again. Collectively, the field of
displays enabled a kind of programming that was substantially different—in terms of
its representational affordances—from using GDB or a single terminal instance.
Moreover, a snapshot-history-only research approach would have never had access to
how or why Dana (re)configured her development environment.
3.6.3.3 Toby said recursion was the “hardest programming way to

think”
 When I gave Toby a code sample task in an interview, he immediately
commented on the fact that it used recursion. Recursion was, as he said, “the hardest
programming way to think.” At one point his exact phrasing, quoting the film Ice
Age, was that “recursion is bad juju.” The task in question was adapted from an
example in Abelson and Sussman (1996) that approximates the square root of a
number using an elegant recursive approach.

 107

 Toby’s first explanation for why recursion was bad was that it’s a completely
unnatural way to think. He cited examples from cooking by saying, in effect,
“Nobody ever stirs by saying stir once, and if it’s not stirred, stir once. They say stir
100 times.” He cited simple operations—including incrementing a number—where
using recursion to push and pop a stack seemed needlessly complex. One of his most
damning indictments of recursion was that his class introduced it as a solution to
generate numbers in the Fibbonacci sequence. Of course recursion works for
examples that are mathematically recursive, he reasoned, but outside of those
obviously contrived examples it was bad joo joo when compared to understandable,
sensible iteration.
 The fuller account of Toby’s resistance to recursion—and slight change of
heart after an instructional moment—is beyond the scope of what I can present here.
Suffice it to say that Toby’s feelings toward recursion—rooted in a sense of it being
an unnatural way to think—strongly directed his approach to programming. The
approach was so strong, in fact, that during our first interview he wasn’t fully able to
produce working code examples of why recursion was absurd despite his vehement
conviction that it was. In other words, he maintained that recursion was bad and
inefficient even though every time he tried to demonstrate its inferiority he made
mistakes in his code and his examples didn’t work.

3.6.4 Dynamic epistemological models can offer a lens for
reforming assessment and instruction.

 Historically, a recognition of in-pieces cognitive dynamics in science
education (diSessa, 1993; Hammer, 1994) has led to more direct research on how
those frameworks inform instruction (Hammer & Elby, 2003; Hammer, 1996; Louca
et al., 2004). What I describe here is research still at the formative end of generating
models to explain cognition. And, because the focus of the research was explicitly on
learning and not instruction, I advise prudence in trying to draw certain kinds of
specific recommendations from the work I present.
 Those restrictions being said, we can think carefully about what this work
means for instruction. For practical purposes, let’s refine terminology so we can talk
more specifically and precisely about components of teaching. Below are my working
definitions for teaching components:

• How should instructors change the way they act in the classroom
(instruction)?

• How should this research inform the set of intended learning outcomes
instructors prepare (curriculum)?

• How should we change the way we measure or otherwise go about
ascertaining what students know (assessment)?

The clearest implications of my work are in instruction and assessment.
 From an instruction perspective, it may help teachers to know that students
can enact different epistemological stances as part of their programming practice. As
stated, that finding is in principle not new (cf., Gaspar & Langevin, 2007). What is
new, I think, is the characterization that these stances evidence epistemological
resources that can be tapped for learning (cf., Hammer & Elby, 2003). That sense-
making about program design choices or computational concepts is a worthwhile

 108

activity, for example, is a message instructors can send to students that resonates with
larger findings in engineering education research (Danielak et al., in press).
Moreover, instructors can be more sensitive to what kinds of knowledge-activity
students think they’re doing, particularly when making epistemological moves like
supposing might help students work through design problems.
 My findings also speak to assessment. In the course I studied, there were few
(if any) assessment instruments that would have revealed the kinds of knowledge I
document Lionel and Rebecca having in this study. At no point in my observational
data of the course were students asked to explain a design choice or reason about
competing solutions to handle a problem. At no point were they encouraged to deeply
sense-make about the conceptual content of the course, particularly the traditionally
tricky topics of pointers and pointer arithmetic. At no point in my data did the
instructor model the kind of sense-making Rebecca did in her interviews, a fact which
she noted at one point as distinguishing the course from Basic Programming, its first-
semester counterpart. Because the course never explicitly asked students to sense-
make, reason about design choices, or explain designs, it never used information
about what knowledge students had about those things to inform its instruction. It
couldn’t. Moreover, because the course never explicitly asked students to sense-
make, reason about design choices, or explain designs, I was left to conclude such
things were not prioritized learning outcomes of the course. To be clear, all courses
establish a kind of focus by deciding what won’t be covered, and I don’t fault the
instructor at all for running a course where design knowledge wasn’t an enacted
learning outcome. But, I’m also left to wonder: why wasn’t it? Given that even
beginning students can think about software design, and given that engineering as a
discipline fundamentally involves design, shouldn’t it have been?

 109

4 Conclusion
 If there is one overarching finding from this dissertation, it’s that students
clearly have resources for thinking about designing programs and a diversity of
approaches to programming in the moment. Below, I explain the kind of diversity I
saw in programming approaches. Then, I conclude with a discussion of what my
research might mean for assessment.

4.1 We should think carefully about what students’
programming design knowledge means for assessment

 My research helps us document and model the kinds of knowledge students
have. In so doing, it points out kinds of information that the course’s assessments
were apt to miss:

1. How students frame or otherwise approach the task of programming in the
moment

2. The role of different kinds of prior experience in stabilizing (or potentially
destabilizing) certain kinds of frames

3. In-the-moment practices—including talking out solutions, sketching out
debugging strategies, and writing out pseudo-code—that display students’
competence and sense-making

4. The code history that traces how designs evolve, including how students start
projects and what parts of their designs become dead-ends

Together, those four points are relevant for formative assessment (Black & Wiliam,
1998) in introductory programming. (1) and (2) point us toward what students think
they’re doing when they’re programming. Analogous work from science education
tells us that students’ sense of the kind of knowledge activity they’re enacting matters
for learning and assessment (Russ et al., 2008). For example, knowing early on that
students are blindly copying code or randomly trying syntax gives instructors a
chance to intervene. But, my research suggests intervention can’t just be about
stopping a bad behavior: knowing that copy-paste behavior is happening is different
from knowing why it’s happening.
 Formative assessment has to be about diagnosing causes, not just identifying
symptoms. Otherwise, we run the risk of ignoring or even harming students’
productive knowledge. Take the example of copy-paste behavior, as documented by
Gaspar and Langevin (Gaspar & Langevin, 2007). One reason we may see copy-paste
behavior, as Study 1 demonstrates, is that students might see situations as new
instances of already-solved problems. In professional practice, seeing old solved
problems in new situations can be productive. Such insights can, for example, direct
engineers to use a pre-built library of functions instead of building their own. But,
another related reason for copy-paste may be efficiency. For Rebecca, copying and
pasting code was very fast; it required only a few quick keystrokes. In the short run,
Rebecca’s choice to copy the code was a faster, less demanding, more trustworthy
route to go on than was abstracting the code to a function. When we consider students
trying to see common problems in new scenarios and solve such problems efficiently,

 110

“copy-paste” becomes a symptom rather than a root cause. Epistemological
frameworks, then, can inform assessments by offering explanations that aim at the
root cause of certain behaviors.
 Points 3 and 4 complement knowledge analysis by drawing focus to artifacts,
practices, and history. As data from Lionel shows (Study 2), a crucial part of his
design process involves artifacts and activities that were only distally knowable to the
assessments he got in class. Lionel’s instructor had no direct access to:

• Lionel’s whiteboard
• the hours Lionel may have spent working out designs in chalk
• how Lionel might have talked out design features
• how Lionel’s initial “pseudo-code” evolved into his final design.

In Rebecca’s case, commented-out code in her final project submission were perhaps
the only clues at all that she tried abstracting some flight day-checking procedures
into functions (Study 1). Without Rebecca’s history, the instructor would have had no
reliable way of knowing:

• Rebecca began her flights database project by copying code from an earlier
project

• Rebecca’s original solution for day-checking evolved from a seven-fold
conditional structure, one for each day

• Rebecca may have tried abstracting day-checking procedures, even creating a
function called check_days.

 To sum up: traditional assessments can tell us what students finally produce
but not how they produce it, when they produce it, why they produce it, or what the
production process was. In the summative assessment structure of the course, final
student products were the only products submitted to the instructor. My research
shows that what’s happening in the interstices—before typing, between compiles,
away from the computer—can be captured and, in principle, analyzed and acted upon
by instructors.

4.2 What We Might Change About Classroom Practice
 What follows is my speculation about how we might specifically change
classroom practices in light of my research findings. I move from recommendations I
think are most strongly supported by my data to recommendations that align with my
findings but are more expansive, and thus less strongly supported. As my
recommendations broaden, I try to offer not only an instructional recommendation but
a concomitant question for research.

4.2.1 Instructors could look beyond content to understand student
difficulties

 I think first and foremost, instructors have to have a willingness to recognize
that the difficulties they think they’re seeing in students are difficulties they may be
viewing through a lens of content. For example, after seeing a student struggle an
instructor might say “the student doesn’t know assignment statements.” But, those
difficulties almost certainly have a deeper explanation. I say “almost certainly,”
where what I mean is that there are a number of patterns we’ve identified as common

 111

novice errors, but most research stops before asking why that’s a common novice
error. With rare exceptions (Fleury, 1991, 2000), the computing education community
doesn’t encourage asking the question why might a student be doing this? and what
might this tell me about the way a student is making sense of this? By contrast, my
research suggests those orientations are ripe, low-hanging fruit for instructors to take
on. I think one of the first things as instructor could ask is, why would a student be
thinking that this is the appropriate thing to be doing? And that holds true whether
the thing in question is writing the statement this way, or interpreting the code this
way, or enacting this kind of programming activity this way.
 Moreover, we know from research on metacognition (Schoenfeld, 1987, 1992)
that thinking beyond content opens the palette of kinds of interventions an instructor
can make. Schoenfeld (1987), for example, came to encourage metacognition in his
classroom by doggedly asking student groups what they were doing, why they were
doing it, and how they hoped it would lead them to a solution. Students ultimately
came to internalize such strategies and spent far less time floundering along solution
paths that weren’t ultimately productive. Might the same idea be true in introductory
programming courses? To find out, we could begin researching in earnest how often
and in what ways instructors model metacognition for their students. Currently, I
would argue, we don’t know whether and how instructors do so.

4.2.2 Instructors could use code history to inform interventions
 When, for example, a student comes to office hours with a problem on a
project, an instructor needs to quickly come to grips with the state of the students’
project, the logic of their design, where they’re stuck, why they’re stuck, and what
might best help them. That’s no small task. But, given my analysis I have strong
reason to believe that having code history available to instructor could change both
the nature of coming to terms with a student’s project and the conversation with a
student that results. If an instructor can see the evolution of a student’s code, at the
very least they could see where the student started, how the code was growing, and
where the student was working most recently. Even if the instructor had never before
seen the code (or its history) until that moment in office hours, having both available
changes the kind of view the instructor can get of the code and the specifics of the
intervention that might result. In Rebecca’s case, for example, it might have been an
opportunity to explore why her check_days abstracted function was failing on her
flights database project.
 Having code-snapshot capabilities also changes the kind of research we can
do. First and foremost, a result of this dissertation was to create a freely-available,
lightweight, open-source framework for capturing and visualizing students’ code
histories.68 So, the most basic kind of study would involve deploying that framework
from the instructional side of a course and exploring what happens, as, for example,
Hurd (2013) has done. One could ask questions of how instructors build code
snapshotting into their course, how such information could or did inform assessment,
and how such information could or did change the nature of instructional interactions
with students. Was it for the better? If so, how do we know? If not, how do we know?

68 https://github.com/briandk/gitvisualizations

 112

4.2.3 Instructors could establish a norm of asking why a design
choice makes sense

 The most far-reaching implication of the research I present here is that
instructors should establish a norm in their classes where anyone, at any point, for any
piece of code, is allowed to ask why does this make sense as a design choice? Why is
that an obvious choice to make? How does that work? Consider a parallel example
from mathematics education. In Don Saari’s calculus class at UC Irvine, he “invokes
the principle of what he calls “WGAD”—“Who gives a damn?” (Bain, 2004, pp. 38–
39). Bain explains:
At the beginning of his courses, he tells his students that they are free to ask him the
question on any day during the course, at any moment in class. He will stop and
explain to his students why the material under consideration at that moment—
however abstruse and minuscule a piece of the big picture it may be—is important,
and how it relates to the larger questions and issues of the course. (Bain, 2004, p. 39)
 What I’m suggesting is even broader than that, because it’s not just a question
students can ask of professors; it’s a question anyone can ask of anyone. I see it as the
programming and design extension of a sociomathematical norm (Yackel & Cobb,
1996), and I think it could lead to collaborative sense-making. That is, I’m asking for
an accepted cultural practice that is also itself a design practice, whereby an instructor
can help create a safe, stable space for a community to be reflective and critical about
design choices. I also think it’s an idea that leads to others, such as letting, if not
requiring, students review one another’s code. When students are forced to reckon
with someone else’s code and understand their design decisions, they’re also forced
to justify their own decisions. And establishing “why that design choice?” or “how
does that make sense?” as a norm provides reciprocal opportunities for students, not
just instructors, to improve the code of others.
 The research questions that come out of such an idea would include:

• How can an instructor satisfactorily establish norms about design in a
classroom?

• What does it look like when students collaboratively sense-make about a
program’s design choices?

• What does it look like when students are asked to reflect on their own design
choices?

• How might introducing a code review component into a course change the
way students approach design? How might it improve students’ conceptual
understanding? How might it improve the quality of the code students
produce?

4.3 Final Remarks
 How students design programs matters for learning and instruction in
engineering. It matters because finished code reflects what students know about
design, whether or not instructors capture such information. It matters because
students have resources for learning about and engaging in design; whether or not
curriculum, instruction, and assessment choose to tap into those resources. It matters

 113

because design should be an intellectual thread that runs through all engineering
courses. That thread shouldn’t stop when we introduce students to programming.

 114

5 References
Abelson, H., & Sussman, G. J. (1996). Structure and Interpretation of Computer

Programs (2nd ed.). Cambridge, Mass: MIT Press.
Adelson, B., & Soloway, E. (1985). The Role of Domain Experience in Software

Design. IEEE Transactions on Software Engineering, SE-11(11), 1351 –
1360. doi:10.1109/TSE.1985.231883

Archer, L. B. (1979). Whatever became of design methodology. Design Studies, 1(1),
17–18.

Bain, K. (2004). What the best college teachers do. Cambridge, Mass: Harvard
University Press.

Baker, A., & van der Hoek, A. (2010). Ideas, subjects, and cycles as lenses for
understanding the software design process. Design Studies, 31(6), 590–613.
doi:10.1016/j.destud.2010.09.008

Ball, L. J., Onarheim, B., & Christensen, B. T. (2010). Design requirements,
epistemic uncertainty and solution development strategies in software design.
Design Studies, 31(6), 567–589. doi:10.1016/j.destud.2010.09.003

Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers’
misconceptions of BASIC programming statements. Communications of the
ACM, 26(9), 677–679. doi:http://doi.acm.org/10.1145/358172.358408

Black, P., & Wiliam, D. (1998). Inside the Black Box: Raising Standards Through
Classroom Assessment. Phi Delta Kappan, 80(2), 139–44.

Boaler, J. (1998). Open and closed mathematics: Student experiences and
understandings. Journal for Research in Mathematics Education, 29(1), 41–
62.

Boaler, J. (2000). Mathematics from another world: Traditional communities and the
alienation of learners. The Journal of Mathematical Behavior, 18(4), 379–397.
doi:10.1016/S0732-3123(00)00026-2

Boaler, J. (2002). The development of disciplinary relationships: Knowledge, practice
and identity in mathematics classrooms. For the Learning of Mathematics,
22(1), 42–47.

Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematical
worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and
learning (pp. 171–200). Westport, CT: Ablex Pub.

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice programming.
Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 10–13. doi:10.1145/567067.567069

Bonar, J., & Soloway, E. (1985). Preprogramming Knowledge: A Major Source of
Misconceptions in Novice Programmers. Human-Computer Interaction, 1(2),
133.

Bucciarelli, L. L. (1994). Designing engineers. Cambridge, Mass: MIT Press.
Clancy, M. (2004). Misconceptions and Attitudes that Interfere with Learning to

Program. In S. Fincher & M. Petre (Eds.), Computer Science Education
Research (pp. 85–100). London, UK: RoutledgeFalmer.

 115

Danielak, B. A., Gupta, A., & Elby, A. (in press). The Marginalized Identities of
Sense-Makers: Reframing Engineering Student Retention. Journal of
Engineering Education.

Danielsiek, H., Paul, W., & Vahrenhold, J. (2012). Detecting and Understanding
Students’ Misconceptions Related to Algorithms and Data Structures. In
Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education (pp. 21–26). New York, NY, USA: ACM.
doi:10.1145/2157136.2157148

diSessa, A. A. (1986). Models of Computation. In D. A. Norman & S. W. Draper
(Eds.), User centered system design: new perspectives on human-computer
interaction (pp. 201–218). Hillsdale, N.J: L. Erlbaum Associates.

diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and
Instruction, 10(2/3), 105–225.

diSessa, A. A. (2002). Why “Conceptual Ecology” is a good idea. In M. Limón & L.
Mason (Eds.), Reconsidering conceptual change: issues in theory and
practice (pp. 29–60). Dordrecht ; Boston: Kluwer Academic Publishers.

diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change?
International Journal of Science Education, 20(10), 1155–1191.
doi:10.1080/0950069980201002

Duckworth, E. R. (2006). “The having of wonderful ideas” and other essays on
teaching and learning (3rd ed.). New York: Teachers College Press.

Elby, A., & Hammer, D. (2010). Epistemological resources and framing: A cognitive
framework for helping teachers interpret and respond to their students’
epistemologies. In L. D. Bendixen & F. C. Feucht (Eds.), Personal
epistemology in the classroom: theory, research, and implications for practice
(pp. 409–434). Cambridge, UK ; New York: Cambridge University Press.

Elliott Tew, A. (2010). Assessing fundamental introductory computing concept
knowledge in a language independent manner (Ph.D.). Georgia Institute of
Technology, Ann Arbor. Retrieved from ProQuest Dissertations & Theses
Full Text. (873212789)

Elliott Tew, A., & Guzdial, M. (2010). Developing a validated assessment of
fundamental CS1 concepts. Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 97–101.
doi:10.1145/1734263.1734297

Elliott Tew, A., & Guzdial, M. (2011). The FCS1: a language independent assessment
of CS1 knowledge. In Proceedings of the 42nd ACM technical symposium on
Computer science education (pp. 111–116). New York, NY, USA: ACM.
doi:10.1145/1953163.1953200

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock
(Ed.), Handbook of research on teaching (3rd ed., pp. 119–161). New York :
London: Macmillan ; Collier Macmillan.

Eynde, P., & Hannula, M. (2006). The Case Study of Frank. Educational Studies in
Mathematics, 63(2), 123–129. doi:10.1007/s10649-006-9030-8

Fleury, A. E. (1991). Parameter passing: the rules the students construct. In
Proceedings of the twenty-second SIGCSE technical symposium on Computer

 116

science education (pp. 283–286). New York, NY, USA: ACM.
doi:10.1145/107004.107066

Fleury, A. E. (1993). Student Beliefs about Pascal Programming. Journal of
Educational Computing Research, 9(3), 355–371. doi:10.2190/VECR-P8T6-
GB10-MXJ5

Fleury, A. E. (2000). Programming in Java: student-constructed rules. SIGCSE Bull.,
32(1), 197–201. doi:10.1145/331795.331854

Gainsburg, J. (2006). The mathematical modeling of structural engineers.
Mathematical Thinking & Learning, 8(1), 3–36.
doi:10.1207/s15327833mtl0801_2

Gal-Ezer, J., & Zur, E. (2004). The efficiency of algorithms--misconceptions.
Computers & Education, 42(3), 215–226.

Gaspar, A., & Langevin, S. (2007). Restoring “coding with intention” in introductory
programming courses. Proceedings of the 8th ACM SIGITE Conference on
Information Technology Education, 91–98. doi:10.1145/1324302.1324323

Ginsburg, H. P. (1997). Entering the child’s mind: the clinical interview in
psychological research and practice. Cambridge ; New York: Cambridge
University Press.

Ginsburg, H. P., & Opper, S. (1988). Piaget’s Theory of Intellectual Development
(3rd ed.). Englewood Cliffs, N.J: Prentice-Hall. Retrieved from
http://lccn.loc.gov/87017353

Goffman, E. (1974). Frame Analysis: An Essay on the Organization of Experience.
New York: Harper & Row.

Goldin-Meadow, S. (2003). Hearing gesture: how our hands help us think.
Cambridge, Mass: Belknap Press of Harvard University Press.

Goodwin, C. (2000). Action and embodiment within situated human interaction.
Journal of Pragmatics, 32(10), 1489–1522. doi:10.1016/S0378-
2166(99)00096-X

Gupta, A., Hammer, D., & Redish, E. F. (2010). The Case for Dynamic Models of
Learners’ Ontologies in Physics. Journal of the Learning Sciences, 19(3), 285.
doi:10.1080/10508406.2010.491751

Hall, R. (1999). Following mathematical practices in design-oriented work. In C.
Hoyles, C. Morgan, & G. Woodhouse (Eds.), Rethinking the Mathematics
Curriculum (pp. 29–47). London: Falmer Press.

Hall, R., & Nemirovsky, R. (2012). Introduction to the Special Issue: Modalities of
Body Engagement in Mathematical Activity and Learning. Journal of the
Learning Sciences, 21(2), 207–215. doi:10.1080/10508406.2011.611447

Hall, R., & Stevens, R. (1995). Making space: A comparison of mathematical work in
school and professional design practices. In S. L. Star (Ed.), The cultures of
computing (pp. 118–145). Oxford, UK: Blackwell Publisher.

Hall, R., Stevens, R., & Torralba, T. (2002). Disrupting representational infrastructure
in conversations across disciplines. Mind, Culture & Activity, 9(3), 179–210.

Hall, R., Wright, K., & Wieckert, K. (2007). Interactive and Historical Processes of
Distributing Statistical Concepts Through Work Organization. Mind, Culture
& Activity, 14(1/2), 103–127. doi:10.1080/10749030701307770

 117

Hammer, D. (1989). Two approaches to learning physics. The Physics Teacher,
27(9), 664–670. doi:10.1119/1.2342910

Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and
Instruction, 12(2), 151–183. doi:10.2307/3233679

Hammer, D. (1996). Misconceptions or P-Prims: How May Alternative Perspectives
of Cognitive Structure Influence Instructional Perceptions and Intentions?
Journal of the Learning Sciences, 5(2), 97–127.
doi:10.1207/s15327809jls0502_1

Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K.
Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of
beliefs about knowledge and knowing (pp. 169–190). Mahwah, N.J: L.
Erlbaum Associates.

Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning
physics. The Journal of the Learning Sciences, 12(1), 53–90.
doi:10.2307/1466634

Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and
transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern
multidisciplinary perspective. Greenwich, CT: IAP.

Hannula, M., Evans, J., Philippou, G., & Zan, R. (2004). Affect in Mathematics
Education–Exploring Theoretical Frameworks. Research Forum. International
Group for the Psychology of Mathematics Education, 30.

Henderson, K. (1999). On line and on paper: visual representations, visual culture,
and computer graphics in design engineering. Cambridge, Mass: MIT Press.

Herman, G. L., Kaczmarczyk, L., Loui, M. C., & Zilles, C. (2008). Proof by
incomplete enumeration and other logical misconceptions. Proceeding of the
Fourth International Workshop on Computing Education Research, 59–70.
doi:10.1145/1404520.1404527

Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories:
Beliefs about knowledge and knowing and their relation to learning. Review of
Educational Research, 67(1), 88–140. doi:10.3102/00346543067001088

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions.
In Proceedings of the twenty-eighth SIGCSE technical symposium on
Computer science education (pp. 131–134). New York, NY, USA: ACM.
doi:10.1145/268084.268132

Hurd, A. (2013, March). Assessment in an Introduction to Programming Course.
Presented at the 16th Annual Course Technology Conference, San Diego, CA,
USA. Retrieved from http://www.slideshare.net/CengageLearning/andrew-
hurd-assessment-in-an-intro-to-programming-course

Hutchins, E. (1995a). Cognition in the Wild. Cambridge, Mass: MIT Press.
Hutchins, E. (1995b). How a cockpit remembers its speeds. Cognitive Science, 19(3),

265–288. doi:10.1016/0364-0213(95)90020-9
Izsák, A. (2004). Students’ Coordination of Knowledge When Learning to Model

Physical Situations. Cognition & Instruction, 22(1), 81–128.
Jackson, M. (2010). Representing structure in a software system design. Design

Studies, 31(6), 545–566. doi:10.1016/j.destud.2010.09.002

 118

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour.
In Proceedings of the 2006 international workshop on Computing education
research - ICER ’06 (p. 73). Canterbury, United Kingdom.
doi:10.1145/1151588.1151600

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice.
Journal of the Learning Sciences, 4(1), 39. doi:10.1207/s15327809jls0401_2

Joy, M., Sinclair, J., Sun, S., Sitthiworachart, J., & López-González, J. (2009).
Categorising computer science education research. Education and Information
Technologies, 14(2), 105–126. doi:10.1007/s10639-008-9078-4

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying
student misconceptions of programming. Proceedings of the 41st ACM
Technical Symposium on Computer Science Education, 107–111.
doi:10.1145/1734263.1734299

Kaiser, D. (2005). Drawing theories apart: the dispersion of Feynman diagrams in
postwar physics. Chicago: University of Chicago Press.

Keller, E. F. (1983). A feeling for the organism: the life and work of Barbara
McClintock. San Francisco: W.H. Freeman.

Kolikant, Y. B.-D., & Mussai, M. (2008). “So my program doesn’t run!” Definition,
origins, and practical expressions of students’ (mis)conceptions of correctness.
Computer Science Education, 18(2), 135.

Kölling, M., & Utting, I. (2012). Building an open, large-scale research data
repository of initial programming student behaviour. In Proceedings of the
43rd ACM technical symposium on Computer Science Education (pp. 323–
324). New York, NY, USA: ACM. doi:10.1145/2157136.2157234

Latour, B. (1987). Science in action: how to follow scientists and engineers through
society. Cambridge, Mass: Harvard University Press.

Latour, B. (1990). Drawing things together. In M. Lynch & S. Woolgar (Eds.),
Representation in Scientific Practice (1st MIT Press ed., pp. 19–68).
Cambridge, Mass: MIT Press.

Lehrer, R., Schauble, L., Carpenter, S., & Penner, D. (2000). The interrrelated
development of inscriptions and conceptual understanding. In P. Cobb, E.
Yackel, & K. McClain (Eds.), Symbolizing and Communicating in
Mathematics Classrooms: Perspectives on Discourse, Tools, and Instructional
Design (pp. 325–360). Mahwah, N.J: Lawrence Erlbaum Associates.

Lising, L., & Elby, A. (2005). The impact of epistemology on learning: A case study
from introductory physics. American Journal of Physics, 73(4), 372.
doi:10.1119/1.1848115

Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological Resources:
Applying a New Epistemological Framework to Science Instruction.
Educational Psychologist, 39(1), 57–68.

Malmi, L., Sheard, J., Simon, Bednarik, R., Helminen, J., Korhonen, A., …
Taherkhani, A. (2010). Characterizing research in computing education: a
preliminary analysis of the literature. In Proceedings of the Sixth international
workshop on Computing education research (pp. 3–12). New York, NY,
USA: ACM. doi:10.1145/1839594.1839597

 119

Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Upper
Saddle River, NJ: Prentice Hall.

Mayer, R. E. (1981). The Psychology of How Novices Learn Computer
Programming. ACM Computing Surveys (CSUR), 13, 121–141.
doi:10.1145/356835.356841

Minsky, M. L. (1986). The Society of Mind. New York: Simon and Schuster.
Nasir, N. S., & Cooks, J. (2009). Becoming a Hurdler: How Learning Settings Afford

Identities. Anthropology & Education Quarterly, 40(1), 41–61.
doi:10.1111/j.1548-1492.2009.01027.x

Nasir, N. S., & Hand, V. (2008). From the court to the classroom: Opportunities for
engagement, learning, and identity in basketball and classroom mathematics.
Journal of the Learning Sciences, 17(2), 143–179.
doi:10.1080/10508400801986108

Nasir, N. S., & Hand, V. M. (2006). Exploring Sociocultural Perspectives on Race,
Culture, and Learning. Review of Educational Research, 76(4), 449–475.

Nemirovsky, R., Rasmussen, C., Sweeney, G., & Wawro, M. (2012). When the
Classroom Floor Becomes the Complex Plane: Addition and Multiplication as
Ways of Bodily Navigation. Journal of the Learning Sciences, 21(2), 287–
323. doi:10.1080/10508406.2011.611445

Ochs, E., Gonzales, P., & Jacoby, S. (1996). “When I come down I’m in the domain
state”: grammar and graphic representation in the interpretive activity of
physicists. In Interaction and Grammar (pp. 328–369). Cambridge:
Cambridge University Press.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York:
Basic Books. Retrieved from http://lccn.loc.gov/79005200

Parsons, J., & Saunders, C. (2004). Cognitive heuristics in software engineering:
Applying and extending anchoring and adjustment to artifact reuse. IEEE
Transactions on Software Engineering, 30(12), 873 – 888.
doi:10.1109/TSE.2004.94

Patitsas, E., Craig, M., & Easterbrook, S. (2013). On the Countably Many
Misconceptions About #Hashtables (Abstract Only). In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education (pp. 739–739).
New York, NY, USA: ACM. doi:10.1145/2445196.2445443

Paul, W., & Vahrenhold, J. (2013). Hunting High and Low: Instruments to Detect
Misconceptions Related to Algorithms and Data Structures. In Proceeding of
the 44th ACM Technical Symposium on Computer Science Education (pp. 29–
34). New York, NY, USA: ACM. doi:10.1145/2445196.2445212

Pea, R. D. (1986). Language-independent conceptual“ bugs” in novice programming.
Journal of Educational Computing Research, 2(1), 25–36.

Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The Buggy Path to the Development
of Programming Expertise. Focus on Learning Problems in Mathematics,
9(1), 5–30.

Petre, M., van der Hoek, A., & Baker, A. (2010). Editorial. Design Studies, 31(6),
533–544. doi:10.1016/j.destud.2010.09.001

Rodrigo, M. M. T., & Baker, R. S. J. d. (2009). Coarse-grained detection of student
frustration in an introductory programming course. In Proceedings of the fifth

 120

international workshop on Computing education research workshop (pp. 75–
80). New York, NY, USA: ACM. doi:10.1145/1584322.1584332

Rodrigo, M. M. T., Tabanao, E., Lahoz, M. B. ., & Jadud, M. C. (2009). Analyzing
Online Protocols to Characterize Novice Java Programmers. Philippine
Journal of Science, 138(2), 177–190.

Rooksby, J. (2010). “Just try to do it at the whiteboard”: Researcher-participant
interaction and issues of generalisation. In Proceedings of the Studying
Professional Software Design (SPSD) Conference. San Diego, CA, USA.

Rooksby, J., & Ikeya, N. (2012). Collaboration in Formative Design: Working
Together at a Whiteboard. IEEE Software, 29(1), 56 –60.
doi:10.1109/MS.2011.123

Rosenberg, S., Hammer, D., & Phelan, J. (2006). Multiple Epistemological
Coherences in an Eighth-Grade Discussion of the Rock Cycle. Journal of the
Learning Sciences, 15(2), 261–292. doi:10.1207/s15327809jls1502_4

Russ, R. S., Coffey, J. E., Hammer, D., & Hutchison, P. (2008). Making classroom
assessment more accountable to scientific reasoning: A case for attending to
mechanistic thinking. Science Education, 93(5), 875–891.
doi:10.1002/sce.20320

Saussure, F. de. (1986). Course in general linguistics. LaSalle, Ill: Open Court.
Scherr, R. E., & Hammer, D. (2009). Student Behavior and Epistemological Framing:

Examples from Collaborative Active-Learning Activities in Physics.
Cognition & Instruction, 27(2), 147–174. doi:10.1080/07370000902797379

Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In Cognitive
Science and Mathematics Education (pp. 189–215). Lawrence Erlbaum
Associates.

Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of
“well-taught” mathematics courses. Educational Psychologist, 23(2), 145–
166. doi:10.1207/s15326985ep2302_5

Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on
the unfortunate divorce of formal and informal mathematics. In Informal
reasoning and education (pp. 311–343).

Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving,
Metacognition, and Sense-Making in Mathematics. In D. Grouws (Ed.),
Handbook for research on mathematics teaching and learning (pp. 334–370).
New York: MacMillan.

Schwartz, D. L., Chase, C. C., & Bransford, J. D. (2012). Resisting Overzealous
Transfer: Coordinating Previously Successful Routines With Needs for New
Learning. Educational Psychologist, 47(3), 204–214.
doi:10.1080/00461520.2012.696317

Seppälä, O., Malmi, L., & Korhonen, A. (2006). Observations on student
misconceptions—A case study of the Build – Heap Algorithm. Computer
Science Education, 16(3), 241–255. doi:10.1080/08993400600913523

Sherin, B. L. (2001). How students understand physics equations. Cognition and
Instruction, 19(4), 479–541.

 121

Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions Reconceived: A
Constructivist Analysis of Knowledge in Transition. The Journal of the
Learning Sciences, 3(2), 115–163.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 29, 850–858.
doi:10.1145/6592.6594

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive Strategies and Looping
Constructs: An Empirical Study. Commun. ACM, 26(11), 853–860.
doi:10.1145/182.358436

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the Novice Programmer.
Hillsdale, N.J: L. Erlbaum Associates.

Spacco, J., Hovemeyer, D., Pugh, W., Hollingsworth, J., Padua-Perez, N., & Emad, F.
(2006). Experiences with Marmoset: Designing and Using an Advanced
Submission and Testing System for Programming Courses. In ITiCSE ’06:
Proceedings of the 11th annual conference on Innovation and technology in
computer science education. ACM Press.

Spacco, J., Pugh, W., Ayewah, N., & Hovemeyer, D. (2006). The Marmoset project:
an automated snapshot, submission, and testing system. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications (pp. 669–670). New York, NY, USA: ACM.
doi:10.1145/1176617.1176665

Spacco, J., Strecker, J., Hovemeyer, D., & Pugh, W. (2005). Software Repository
Mining with Marmoset: An Automated Programming Project Snapshot and
Testing System. In Proceedings of the Mining Software Repositories
Workshop (MSR 2005). St. Louis, Missouri, USA.

Spohrer, J. C., & Soloway, E. (1986). Alternatives to construct-based programming
misconceptions. ACM SIGCHI Bulletin, 17, 183–191.
doi:10.1145/22339.22369

Stevens, R., & Hall, R. (1998). Disciplined perception: Learning to see in
technoscience. In Talking Mathematics in School: Studies of Teaching and
Learning (pp. 107–150). Cambridge, U.K: Cambridge University Press.

Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning
and Instruction, 17(2), 219–234. doi:10.1016/j.learninstruc.2007.01.012

Tabanao, E. S., Rodrigo, M. M. T., & Jadud, M. C. (2011). Predicting at-risk novice
Java programmers through the analysis of online protocols. In Proceedings of
the seventh international workshop on Computing education research (pp.
85–92). New York, NY, USA: ACM. doi:10.1145/2016911.2016930

Tannen, D. (Ed.). (1993). Framing in Discourse. New York: Oxford University Press.
Trakhtenbrot, M. (2013). Students Misconceptions in Analysis of Algorithmic and

Computational Complexity of Problems. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science Education
(pp. 353–354). New York, NY, USA: ACM. doi:10.1145/2462476.2465604

Traweek, S. (1988). Beamtimes and lifetimes: the world of high energy physicists.
Cambridge, Mass: Harvard University Press.

Turkle, S., & Papert, S. (1991). Epistemological Pluralism and the Reevaluation of
the Concrete. In I. Harel, S. Papert, & Massachusetts Institute of Technology

 122

(Eds.), Constructionism: research reports and essays, 1985-1990. Norwood,
N.J: Ablex Pub. Corp.

Valentine, D. W. (2004). CS educational research: a meta-analysis of SIGCSE
technical symposium proceedings. SIGCSE Bull., 36(1), 255–259.
doi:10.1145/1028174.971391

Van de Sande, C. C., & Greeno, J. G. (2012). Achieving Alignment of Perspectival
Framings in Problem-Solving Discourse. Journal of the Learning Sciences,
21(1), 1–44. doi:10.1080/10508406.2011.639000

VanLehn, K. (1990). Mind Bugs: The Origins of Procedural Misconceptions.
Cambridge, Mass: MIT Press.

Wagner, J. F. (2006). Transfer in Pieces. Cognition & Instruction, 24(1), 1–71.
doi:10.1207/s1532690xci2401_1

Wortham, S. (2006). Learning Identity: The Joint Emergence of Social Identification
and Academic Learning. Cambridge: Cambridge University Press.

Yackel, E., & Cobb, P. (1996). Sociomathematical Norms, Argumentation, and
Autonomy in Mathematics. Journal for Research in Mathematics Education,
27(4), 458–477. doi:10.2307/749877

Yin, R. K. (2009). Case study research: design and methods (4th ed.). Los Angeles,
Calif: Sage Publications.

 123

6 Appendix 1 – Transcript conventions
• Turns are not numbered, but they are blank-line-delimited
• Short interjected speech that does not interrupt a speaker’s turn is bounded /by

slashes/
• Matching double brackets show the [[onset and termination]] of overlapping

talk across turns.
• *emphasized speech* is bounded by asterisks
• Parenthetical clarifications by the analyst appear in parentheses. (He

considered but rejected square brackets.)
• matching double equals signs mark turn boundaries== ==with minimal or no

audible silence (also known as latching turns)
• Where gestures don’t overlap speech they are in-lined by curly braces when

they happen {folds arms, having made his point}. All gestures enacted by a
speaker appear within that speaker’s turn unless otherwise noted {smiles, self-
satisfied at having made this important clarification} {audience scoffs}.

• When gestures happen during speech, the speech is presented first and
bounded by double pipes. Gestures that happen simultaneously with such
speech are bounded by curly braces, nested within double pipes, and
immediately follow the speech they overlap. For example:

Throwing chainsaws ||*up*|| |{throws chainsaw}| is easy. Just be careful when
they come ||*down*|| |{catches chainsaw for a punctuated finish}|.

 124

7 Appendix 2 – Visual conventions for gestures
A challenge of this dissertation was trying to use still-frames to convey motion and
animation. Where I could, I annotated pictures with arrows to show trajectories of
movement:

Arrow TerminusOrigin

Description Example

Blue arrows project forward to show
action that will occur but hasn’t yet in the
frame you’re looking at. The origin is
where a hand is; the terminus is where it
will be shortly.

Pink arrows show action that already
occurred before the frame you’re looking
at. The origin is where a hand was; the
terminus is where it is.

 125

8 Appendix 3 – Transcript of Rebecca’s pseudo-code 1

episode without gesture codes 2

Interviewer: OK. So then, um, what if we just pretended for a minute, that 3
that, like== 4

Rebecca: ==That that works= 5

Interviewer: ==That that worked== 6

Rebecca: ==OK== 7

Interviewer: ==OK. So then, um. So then you might write like to make an 8
array of {stops writing} actually what would we call this? This is== 9

Rebecca: ==array of pointers, I guess== 10

Interviewer: ==OK. Pointers. It’d be, well. So. The—the one we had was like 11
int, star p, um, it would be some number, um, and I guess that’d be it in order 12
to just declare /Yes/ that right? OK. And then you’re saying, how would you 13
like access an element of it? 14

Rebecca: Uh, well, what I was think—like if I wanted to like, save it or 15
whatever, /Yeah/ I could make a while loop, scan in the—scan in the data 16
from the album, /OK/ uh, which is, I can write it [if you want 17

Interviewer: Sure, go ahead]] 18

Rebecca: Um, so, it was== 19

Interviewer: [[Oh, sorry, just have to] 20

Rebecca: [Oh] 21

Interviewer: It’s /Oh, OK/ one of those annoying ticks, but it works best cause 22
of the camera if, ah, /Ah, OK/ if that’s pointing away from your hand 23

Rebecca: [OK] 24

Interviewer: [That’s fine] 25

Rebecca: Um, there was album, and then, so there was, uh, percent d, and 26
percent s, and then give those names, just, I’ll just call it number, and title. 27
/Mmmhmm/ And so, at least, my—until it does not equal EOF, and then my 28
thinking at least, is you should be able to, um, say that 29

 126

Rebecca: “star p of i” /mmhmm/ equals, uh, the title, and then you just do i++, 30
so then it’ll move to the next one /OK/ and you just keep saving each of the 31
pointers in the array to a title /Mmmhmm/ And you just increment by 1 until 32
you reach the end of file. 33

Interviewer: OK== 34

Rebecca: ==Like *that* would make sense to me. 35

Interviewer: So then, like, what would go in p of one would be the first title 36
we read in== 37

Rebecca: ==Yes, 38

Interviewer: uh, would, when the while loop runs again, does it get a fresh line 39
[[line from that 40

Rebecca: Yeah, because]] uh, what the while loop does is it reads in the line 41
and then once it reaches the end of character it’ll go back down—it’ll do the 42
while loop and then go back down to the next thing—line, it’ll read in the line 43
until it reaches the end of file 44

Interviewer: So as you step through this loop /mmhmm/ i keeps going up by 45
one== 46

Rebecca: ==Yes. 47

Interviewer: Uh 48

Rebecca: And the lines keep going down so, that way, the first line is going to 49
be, uh the p—element zero /OK/ uh the second one’ll be element one 50
(Interview 4 of 5, April 6, 2012)51

 127

9 Appendix 4 – Conceptual knowledge frameworks in
computing don’t tell us much about how Lionel
structured an in-interview program

 In this section, I explore Lionel’s work in solving an in-interview
programming task. First, I reproduce the prompt Lionel was given. Next, I show the
final source code of his solution to the problem, written in C. In the analysis that
follows, I move outward to explore the context of that code’s production.
 My choice to start with the code first is deliberate. I’m trying to mimic what
the instructor of a typical programming course might see: the final submitted form of
a student’s code. This approach is admittedly a bit backwards, since the data I show
after I present Lionel’s submission is all about what happened before the code
reached its final form. But, I think this approach useful because it invites us to
explore an artifact first, then raise questions about the conditions of its production. In
that sense, my presentation has the anthropological feel of understanding a found
object, which I think is a faithful way of looking at what many instructors (not to
mention researchers, and of course active software developers) face in their day-to-
day work.

9.1 Analyzing Lionel’s Solution From a Conceptual
Knowledge View

 To infer conceptual knowledge, I’ll use Elliott Tew’s (2010) conceptual
categories for procedural programming in first-semester computer science (CS1)
courses. My reasons for doing so are:

1. Elliott Tew (2010) sought concepts that were language-agnostic. That is, the
concepts Elliott Tew (2010) identified are not idiomatic to just one language.
Rather, they are general ideas implemented in nearly every major procedural
language taught to undergraduates (Java, Python, C-based languages,
Scheme).

2. Elliott Tew’s (2010, pp. 23–27) selection process was extensive. She began
with curricular documents, moved to canonical texts, then ultimately
conducted a thematic analysis on emerging categories to produce her final list
of concepts.

3. To date, Elliott Tew’s (2010) identification of CS1 concepts is the only work I
know of that has been carried forward to create, administer, and validate
concept inventories in CS1 (Elliott Tew & Guzdial, 2010, 2011)

 Figure 2 below presents an overview of the conceptual features I identified in
Lionel’s code. Even in a short, relatively simple program Lionel exhibits four of the
ten concept categories Elliott Tew (2010) identifies. Moreover, he uses each of them
“correctly,” so to speak, in that not only does his program compile, it also properly
finds the range of the numbers it’s given. It’s also worth noting that Lionel’s code
displays consistent, helpful use of whitespace (indentation) as well as informative
comments. While these attributes aren’t conceptual, per se, they are the sorts of
features an instructor might consider in assigning a grade to this program.

 128

Figure 9-1 – Highlighting the conceptual features of Lionel’s code given Elliott Tew’s (2010)
outline of CS 1 concepts

 129

10 Appendix 5 – Neverly-Asked Questions (NAQs)

10.1.1 Neverly Asked Questions (NAQs) about my conceptual
analysis of Lionel’s code

Didn’t Elliott Tew (2010) define those concepts as a way of creating a concept
inventory?
Yes. In her work, I believe each concept was represented by at least one multiple-
choice question (MCQ) with carefully-chosen distractors. In each MCQ a student
would see a snippet of pseudo-code and be asked to choose from a list of responses.
The structure was explicitly modeled after Force Concept Inventory (FCI) work in
physics education.

So, if her intent (and research) was about making a concept inventory, aren’t you
misusing her ideas of concepts?
What makes you say that?

Well, first off, she used categories of concept to create concrete instances of code,
which she tests students on…
That’s my understanding, yep.

But you used a concrete instance of code — Lionel’s code — and inferred the
existence of concepts in it. So, that’s not the same thing as what Elliott Tew (2010)
did.
I agree I’m not doing what she did, but I don’t think that observation necessarily
undermines the usefulness of what I am doing. If the concepts she identifies really are
general concepts, then it would seem silly to think we couldn’t find concrete instances
of code that exemplify them. I think I might rephrase your objection: “how can I trust
that you properly identified concepts in Lionel’s code?” My answer to that is, again,
yes, I have no coding scheme from Elliott Tew to apply. But, the code Lionel wrote is
there and my candidates for assigning concepts are there: my results are open to
inspection and challenge.

OK. Fine. But what “conceptual knowledge analysis” is there to speak of? You just
made a slide and identified which parts of his code might correspond to which
concepts.
What I did was assign concepts to canonically-correct — that is, syntactically valid
parts of Lionel’s code that also work properly to make the program produce the right
results — sections of Lionel’s code. I think your objection is about my inferential
basis: “why does the presence of those code chunks — and my tagging certain chunks
as aligning with Elliott Tew’s (2010) concepts — imply that Lionel has those
concepts in his head?”

I accept your amendment. So, what basis do you have for saying “this concept is in
Lionel’s mind?”

 130

I feel like I’m on the same playing field as the concept inventory folks, though in
some ways I’m setting a modified standard for validity. Elliott Tew (2010) says this
about validity:

validity is the evidence that assures us that questions about a particular
concept are indeed measuring that concept. For instance, a question about
arrays should require a student to have knowledge about arrays, but should not
require knowledge about another concept, such as recursion. In addition, it is
important that the question cannot be answered correctly without knowledge
of arrays. (Elliott Tew, 2010, p. 10)

I don’t know that I share her assumptions about validity. But, what specifically might
be at issue here is “does the presence of a for-loop in code imply the student has
knowledge of definite loops?” My answer is, “if not that, then what?”

But couldn’t I argue that the for-loop could be there because he copied and pasted it
from the internet? That he wouldn’t have had to know anything about definite loops
to do that?
Yes, you could. My rejoinder to that is in section 3.3.3.

10.1.2 Neverly-asked questions about Lionel’s verbal pseudo-
code description

Why do you so pedantically analyze such a short, small snippet of conversation?
Because by Lionel’s own assertion what was said constitutes his “main concept” (line
12) for the program. That is, by his own account he has just expressed the entire top-
level design for the program. But, he’s done it all all without writing a single
additional line of code.

So?
If anything, this episode suggests that Lionel can and does have ways of expressing a
process or procedure that don’t rely on writing code. More importantly, I think, is that
he views it as a legitimate activity to express ideas at a level above the particularities
of syntax and implementation.

What do you mean “views it as a legitimate activity?”
I think here I’m appealing to my interpretation of Goffman’s (1974) frames: a
participant’s understanding of “what is it” that’s going on in a social situation. Lionel
takes up my bid for him to explain what he’s thinking, but he does so first by
explaining his “general concept” for the program.

Right. But, I mean, he’s just doing what you asked him to do. I don’t understand how
any of this relates to Goffman or frames. That just seems like a needlessly
complicated way to explain he did what you asked.
OK, let’s step back for a second. Suppose you’ve just started going to group therapy.
One of the things group therapy environments often stress is that you should try to

 131

talk about how you feel, which can be a hard transition for people. Group therapy
participants may be used to saying “you always do [X]” when in a fight with
someone. And, if prompted by a group leader to discuss how they feel about
troublesome instance, a participant may adopt that kind of language. “My partner
always yells at me if I’m out late,” for example.
 Group therapy can encourage inward reflection in a way that reshapes how
participants talk about themselves and their feelings. So, after some time in group
therapy our hypothetical participant may change the way they orient toward
questions. If asked “how are you feeling about the fight you and your partner had?”
our hypothetical participant may now say “I feel like I don’t have the freedom to see
the people I want to see.” The focus in speech shifts from the other—in this case a
partner—to the self. Moreover, the substance of the speech is about feelings, rather
than behavior.
 I think these reshapings of speech are neither trivial nor incidental. If we had
transcripts of our hypothetical person’s early sessions in group therapy and compared
them to those of later sessions, I think we would not be surprised to see a marked
change. When asked the same question—in this case “how are you feeling about
[X],” the structure and character of our participant’s response changes after therapy.
 My point here is that an everyday sense of how participants’ speech patterns
change in therapy primes our intuition for thinking more broadly about social
phenomena. A cynical view of our participant would still have to acknowledge that,
observably, the structure of their response to the question “how does that make you
feel?” changes after therapy. I think a sociolinguistic stance would be more generous:
our participant is orienting differently toward the question. Furthermore, I take the
following as evidence of such an orientation:

• A change in sentence focus from the other to the self
• Introspection into the source of a feeling
• Acknowledgment of personal responsibility for feeling those feelings

I think we as analysts can acknowledge that after therapy, our participant frames the
event of being asked, “how does that make you feel?” differently.

OK. So, you’re saying that if we look at the change in how someone answers the
question “how does that make you feel?” we can find evidence of the
superstructure—a frame—that directs their sense of appropriate ways to answer that
question?
Yes.

So how does this get back to your claims about Lionel?
I think it’s tempting to take this position that, “it’s inevitable/totally expected that he
would just verbalize the top-level description of his procedure! I mean, what else
could he possibly do?”

I mean, yeah. Kind of.
Right, but I think actually that assumption isn’t in line with a classic frame analysis
approach. Even if the assumption is right, frame analysis changes the explanation

 132

from “it’s inevitable” to “hmm, I guess almost everyone I’ve ever seen brings or
enacts the same structure of expectations.”

So, my argument is, if you ask someone to describe to you how they’re thinking about
their program, they’re gonna do that. What else would they do?
Right. And I don’t think we disagree that they’ll describe their thinking. I think where
we disagree is that everyone will describe in the same way. I’m saying if they
describe their program to you, that they’re able to express it, what they choose to
verbalize, what they choose to leave out, how their gestures accompany the
explanations, and their ultimate criteria for having satisfied the task of describing for
themselves are all driven underneath (or from above?) by structures of expectations.
And even if one thousand out of one thousand people do the same kind of thing
Lionel does, that doesn’t undermine the idea that people have and bring structures of
expectations to a task. What I think it does is show that one thousand out of one
thousand people share the same sets of expectations about what it is that’s going on
when they’re asked to verbalize their thinking on a programming protocol.

So, what’s the point of this whole section on Lionel’s verbal description, then?
I think the point is that when I ask Lionel to verbalize his thinking, he outlines
through talk what the “main concept” of his program is. I focus on that he decides to
describe it out in words, how he describes it, what he leaves out, how he repairs, and
how all of that reflects structures of expectations about the activity and what he’s
being asked to do. Ultimately, the argument is that Lionel’s choice to take me up on
that bid and how he does so reflects—to me, the analyst—that he views verbal
description of a high-level program as a legitimate activity and part of his approach to
programming.

