Specifically, I will present work on studying the mechanical and electrical properties of carbon nanotube devices. Multiwall carbon nanotubes are concentrically stacked tubular sheets of graphite, where the spacing between each cylinder is simply the natural spacing of graphite. Using a custom-built in-situ nanomanipulation probe, I have shown that it is possible to slide nanotube layers in a telescopic extension mode that exhibits low friction, demonstrating the potential of nanotubes as the ultimate synthetic nanobearing. During this telescopic extension, the electrical resistance of the nanotube devices increases, opening the possibility that these devices can also be used as nanoscale rheostats. I will also present work on using electron holography inside an electron microscope to study the electric field distribution in nanotube field-emission devices. These measurements together demonstrate the wealth of information that can be obtained and frontiers that can be opened by putting operational nanodevices inside an electron microscope.