# 3.3V Dual LVTTL/LVCMOS to Differential LVPECL Translator

The MC100EPT22 is a dual LVTTL/LVCMOS to differential LVPECL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8–lead package and the single gate of the EPT22 makes it ideal for those applications where space, performance, and low power are at a premium. Because the mature MOSAIC 5 process is used, low cost and high speed can be added to the list of features.

- 420 ps Typical Propagation Delay
- Maximum Frequency > 1.1 GHz Typical
- Operating Range:  $V_{CC} = 3.0 \text{ V}$  to 3.6 V with GND = 0 V
- PNP LVTTL Inputs for Minimal Loading
- Q Output Will Default HIGH with Inputs Open
- The 100 Series Contains Temperature Compensation.



# ON Semiconductor®

http://onsemi.com





SO-8 D SUFFIX CASE 751



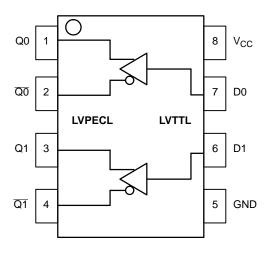


TSSOP-8 DT SUFFIX CASE 948R



A = Assembly Location

L = Wafer Lot


Y = Year

W = Work Week

# ORDERING INFORMATION

| ORDERING IN GRAINATION |         |                  |  |  |  |  |  |  |  |
|------------------------|---------|------------------|--|--|--|--|--|--|--|
| Device                 | Package | Shipping         |  |  |  |  |  |  |  |
| MC100EPT22D            | SO-8    | 98 Units/Rail    |  |  |  |  |  |  |  |
| MC100EPT22DR2          | SO-8    | 2500 Tape & Reel |  |  |  |  |  |  |  |
| MC100EPT22DT           | TSSOP-8 | 100 Units/Rail   |  |  |  |  |  |  |  |
| MC100EPT22DTR2         | TSSOP-8 | 2500 Tape & Reel |  |  |  |  |  |  |  |

<sup>\*</sup>For additional information, see Application Note AND8002/D



#### **PIN DESCRIPTION**

| PIN                                   | FUNCTION                    |
|---------------------------------------|-----------------------------|
| Q0, Q1, <del>Q0</del> , <del>Q1</del> | LVPECL Differential Outputs |
| D0, D1                                | LVTTL Inputs                |
| V <sub>CC</sub>                       | Positive Supply             |
| GND                                   | Ground                      |

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

## **ATTRIBUTES**

| Charact                          | Value                                                     |                             |
|----------------------------------|-----------------------------------------------------------|-----------------------------|
| Internal Input Pulldown Resisto  | N/A                                                       |                             |
| Internal Input Pullup Resistor   | N/A                                                       |                             |
| ESD Protection                   | Human Body Model<br>Machine Model<br>Charged Device Model | > 4 kV<br>> 200 V<br>> 2 kV |
| Moisture Sensitivity, Indefinite | Fime Out of Drypack (Note 1)                              | Level 1                     |
| Flammability Rating              | Oxygen Index: 28 to 34                                    | UL 94 V-0 @ 0.125 in        |
| Transistor Count                 |                                                           | 164 Devices                 |
| Meets or exceeds JEDEC Spec      | c EIA/JESD78 IC Latchup Test                              |                             |

<sup>1.</sup> For additional information, see Application Note AND8003/D.

# MAXIMUM RATINGS (Note 2)

| Symbol            | Parameter                                | Condition 1         | Condition 2         | Rating      | Units    |
|-------------------|------------------------------------------|---------------------|---------------------|-------------|----------|
| V <sub>CC</sub>   | Power Supply                             | GND = 0 V           |                     | 6           | V        |
| VI                | Input Voltage                            | GND = 0 V           | $V_{I} \leq V_{CC}$ | 6 to 0      | V        |
| l <sub>out</sub>  | Output Current                           | Continuous<br>Surge |                     | 50<br>100   | mA<br>mA |
| TA                | Operating Temperature Range              |                     |                     | -40 to +85  | °C       |
| T <sub>stg</sub>  | Storage Temperature Range                |                     |                     | -65 to +150 | °C       |
| $\theta_{JA}$     | Thermal Resistance (Junction-to-Ambient) | 0 LFPM<br>500 LFPM  | 8 SOIC<br>8 SOIC    | 190<br>130  | °C/W     |
| $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case)    | std bd              | 8 SOIC              | 41 to 44    | °C/W     |
| $\theta_{JA}$     | Thermal Resistance (Junction-to-Ambient) | 0 LFPM<br>500 LFPM  | 8 TSSOP<br>8 TSSOP  | 185<br>140  | °C/W     |
| $\theta_{JC}$     | Thermal Resistance (Junction-to-Case)    | std bd              | 8 TSSOP             | 41 to 44    | °C/W     |
| T <sub>sol</sub>  | Wave Solder                              | <2 to 3 sec @ 248°C |                     | 265         | °C       |

 $<sup>2. \ \ \</sup>text{Maximum Ratings are those values beyond which device damage may occur. }$ 

# TTL INPUT DC CHARACTERISTICS $V_{CC}$ = 3.3 V, GND= 0.0 V, $T_A$ = -40°C to 85°C

| Symbol           | Characteristic         | Condition                | Min | Тур | Max  | Unit |
|------------------|------------------------|--------------------------|-----|-----|------|------|
| I <sub>IH</sub>  | Input HIGH Current     | V <sub>IN</sub> = 2.7 V  |     |     | 20   | μΑ   |
| I <sub>IHH</sub> | Input HIGH Current MAX | $V_{IN} = V_{CC}$        |     |     | 100  | μΑ   |
| I <sub>IL</sub>  | Input LOW Current      | V <sub>IN</sub> = 0.5 V  |     |     | -0.6 | mA   |
| V <sub>IK</sub>  | Input Clamp Voltage    | I <sub>IN</sub> = -18 mA |     |     | -1.0 | V    |
| V <sub>IH</sub>  | Input HIGH Voltage     |                          | 2.0 |     |      | V    |
| V <sub>IL</sub>  | Input LOW Voltage      |                          |     |     | 0.8  | V    |

# PECL OUTPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$ , GND = 0.0 V (Note 3)

|                 |                                 |      | -40°C |      | 25°C |      | 85°C |      |      |      |      |
|-----------------|---------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic                  | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>CC</sub> | Power Supply Current            | 32   | 43    | 55   | 35   | 45   | 60   | 37   | 46   | 62   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage<br>(Note 4) | 2155 | 2280  | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV   |
| V <sub>OL</sub> | Output LOW Voltage<br>(Note 4)  | 1355 | 1480  | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV   |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 3. Output parameters vary 1:1 with V  $_{CC}.$  4. All loading with 50  $\Omega$  to V  $_{CC}-2.0$  V.

# AC CHARACTERISTICS $V_{CC}$ = 3.0 V to 3.6 V, GND= 0.0 V (Note 5)

|                                        |                                                                 |     | -40°C 25°C |            | 85°C |           |            |     |           |            |      |
|----------------------------------------|-----------------------------------------------------------------|-----|------------|------------|------|-----------|------------|-----|-----------|------------|------|
| Symbol                                 | Characteristic                                                  | Min | Тур        | Max        | Min  | Тур       | Max        | Min | Тур       | Max        | Unit |
| f <sub>max</sub>                       | Maximum Frequency<br>(See Figure 2. F <sub>max</sub> /JITTER)   | 0.8 | 1.1        |            | 0.8  | 1.1       |            | 0.8 | 1.1       |            | GHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to<br>Output Differential                     | 250 | 400        | 650        | 250  | 420       | 675        | 300 | 500       | 700        | ps   |
| t <sub>skew</sub>                      | Within-Device Skew (Note 6)<br>Device-to-Device Skew (Note 7)   |     | 50<br>200  | 100<br>400 |      | 50<br>200 | 100<br>425 |     | 50<br>200 | 100<br>400 | ps   |
| t <sub>JITTER</sub>                    | Random Clock Jitter<br>(See Figure 2. F <sub>max</sub> /JITTER) |     | 0.2        | < 1        |      | 0.2       | < 1        |     | 0.2       | < 1        | ps   |
| t <sub>r</sub>                         | Output Rise/Fall Times (20% – 80%) Q, $\overline{\mathbb{Q}}$   | 50  | 110        | 200        | 60   | 120       | 220        | 70  | 140       | 250        | ps   |

- 5. Measured using a 2.4 V source, 50% duty cycle clock source. All loading with 50  $\Omega$  to V<sub>CC</sub>-2.0 V. 6. Skew is measured between outputs under identical transitions and conditions on any one device.
- 7. Device–to–Device Skew for identical transitions at identical  $V_{CC}$  levels.

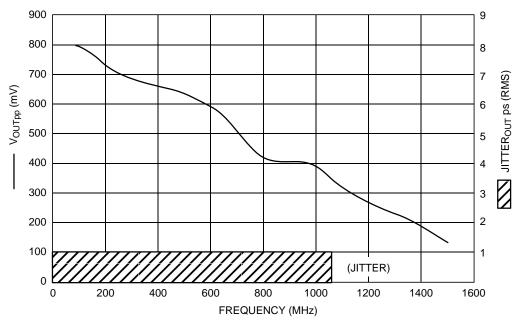



Figure 2. F<sub>max</sub>/Jitter




Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

# **Resource Reference of Application Notes**

AN1404 – ECLinPS Circuit Performance at Non–Standard V<sub>IH</sub> Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1504 – Metastability and the ECLinPS Family

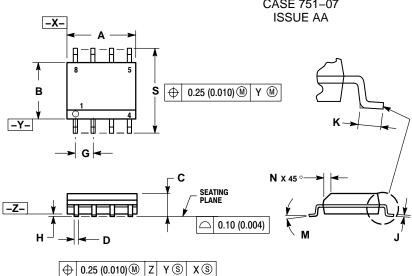
AN1568 – Interfacing Between LVDS and ECL

AN1650 - Using Wire-OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 – Odd Number Counters Design

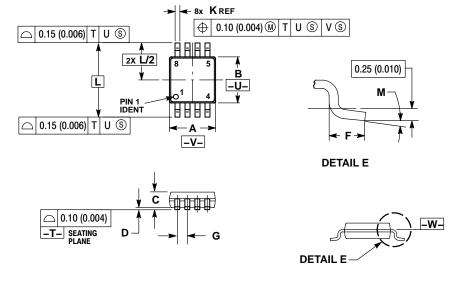
AND8002 – Marking and Date Codes


AND8009 – ECLinPS Plus Spice I/O Model Kit

AND8020 – Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.

#### PACKAGE DIMENSIONS


## **SO-8 D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07 **ISSUE AA**



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- SIDE.
  DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
  PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07

|     | MILLIN    | IETERS | INC       | HES   |  |
|-----|-----------|--------|-----------|-------|--|
| DIM | MIN       | MAX    | MIN       | MAX   |  |
| Α   | 4.80      | 5.00   | 0.189     | 0.197 |  |
| В   | 3.80      | 4.00   | 0.150     | 0.157 |  |
| C   | 1.35      | 1.75   | 0.053     | 0.069 |  |
| D   | 0.33      | 0.51   | 0.013     | 0.020 |  |
| G   | 1.27      | 7 BSC  | 0.050 BSC |       |  |
| Н   | 0.10      | 0.25   | 0.004     | 0.010 |  |
| J   | 0.19      | 0.25   | 0.007     | 0.010 |  |
| K   | 0.40 1.27 |        | 0.016     | 0.050 |  |
| M   | 0 °       | 8 °    | 0 °       | 8 °   |  |
| N   | 0.25      | 0.50   | 0.010     | 0.020 |  |
| S   | 5.80      | 6.20   | 0.228     | 0.244 |  |

# TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
   PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.

  4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
  5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
  6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIN | IETERS  | INC       | HES   |  |
|-----|--------|---------|-----------|-------|--|
| DIM | MIN    | MIN MAX |           | MAX   |  |
| Α   | 2.90   | 3.10    | 0.114     | 0.122 |  |
| В   | 2.90   | 3.10    | 0.114     | 0.122 |  |
| C   | 0.80   | 1.10    | 0.031     | 0.043 |  |
| D   | 0.05   | 0.15    | 0.002     | 0.006 |  |
| F   | 0.40   | 0.70    | 0.016     | 0.028 |  |
| G   | 0.65   | BSC     | 0.026 BSC |       |  |
| K   | 0.25   | 0.40    | 0.010     | 0.016 |  |
| L   | 4.90   | BSC     | 0.193 BSC |       |  |
| M   | ٥°     | 6 °     | 0 °       | 6°    |  |



#### MC100FPT22

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

**JAPAN**: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051

Phone: 81–3–5773–3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.