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Irreducible tensor operators

and the Wigner-Eckart theorem

1. An irreducible tensor operator of order k = 0, 1/2, 1, 3/2, . . . is a col-
lection of operators Tkq, q = k, k − 1, . . . ,−k, that transforms under
rotations like the spherical harmonics Ykq(θ, φ), considered as multipli-
cation operators, i.e.

[Jz, Tkq] = q Tkq (1)

[J±, Tkq] =
√
k(k + 1)− q(q ± 1)Tk,q±1 (2)

where it is understood that Tkq ≡ 0 unless |q| ≤ k.

Another example of a tensor operator is the operator of tensor multi-
plication by some spin-k multiplet of states |kq〉, i.e.

M(k, q)|ψ〉 := |kq〉|ψ〉. (3)

2. Let J2, Jz, and Ω form a complete commuting set of operators with cor-
responding eigenstates labeled uniquely by |ωjm〉. The matrix elements
of the first commutation relation (1) imply that the matrix elements of
any irreducible tensor operator Tkq have a very special structure in the
quantum numbers mJ :

〈ω′j′m′|Tkq|ωjm〉 = 0 unless m′ = m+ q. (4)

The matrix elements of the remaining commutation relations (2) imply
recursion relations for the matrix elements of Tkq:

a〈ω′j′m′|Tk,q±1|ωjm〉 = b〈ω′j′,m′∓1|Tkq|ωjm〉−c〈ω′j′m′|Tkq|ωj,m±1〉
(5)
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where

a =
√
k(k + 1)− q(q ± 1) (6)

b =
√
j′(j′ + 1)−m′(m′ ∓ 1) (7)

c =
√
j(j + 1)−m(m± 1) (8)

3. Part 2 implies that the matrix elements 〈ω′j′m′|Tkq|ωjm〉 with fixed
ω′j′ωj are linearly determined recursively by (for example) the nonzero
matrix element with maximal m′ and m. (One need not work out the
formula explicitly for each matrix element to see that the elements are
so determined.) Thus, the m′m matrix elements of any two irreducible
tensor operators are proportional to each other in the sense that

〈ω′1j′m′|T
(1)
kq |ω1jm〉 = S 〈ω′2j′m′|T

(2)
kq |ω2jm〉 (9)

where S is a scalar that depends on ω′1, ω1, ω
′
2, ω2, j

′, j and the operator
Tk but not m′,m, q. In writing (9) we have assumed of course that the

relevant matrix elements of T
(2)
kq do not vanish identically.

4. The matrix elements of the tensor multiplication operator (3), are just

the Clebsch-Gordan coefficients 〈j′m′|kjqm〉. Choosing T
(2)
kq = Mkq in

(9) thus shows in particular that

〈ω′j′m′|Tkq|ωjm〉 =
〈ω′j′||Tk||ωj〉√

2j′ + 1
〈j′m′|kjqm〉, (10)

where the 〈ω′j′||T ||ωj〉 is called the “reduced matrix element”. This
is the Wigner-Eckart theorem. It states that the matrix elements of
an irreducible tensor operator are proportional to the Clebsch-Gordan
coefficients, with a factor that depends on ω′, ω, j′, j but not m′,m, q.

5. Although our derivation so far only shows that (10) holds when the
Clebsch-Gordon coefficients do not vanish, it actually holds as well
when they do. Thus, besides (4), there is a further restriction:

〈ω′j′m′|Tkq|ωjm〉 = 0 unless j′ ⊂ k ⊗ j. (11)

Equations (4) and (11) are sometimes called selection rules.

2



To see that (10) holds in general one can use the commutation relations
(1,2) to show that the set of vectors {Tkq|jm〉} is closed under the
action of Jz and J±, hence can be decomposed into a set of irreducible
representations of the rotation group. In particular,

JzTkq|jm〉 = (q +m)Tkq|jm〉, (12)

so the decomposition proceeds just as for the product space spanned
by the vectors {|kq〉|jm〉}. This yields a sum of representations (k +
j)⊕ (k+ j − 1)⊕ · · · ⊕ |k− j|. Thus the matrix elements of the tensor
operator on the left hand side of (10) do in fact vanish whenever the
Clebsh-Gordan coefficients on the right hand side vanish.

6. A vector operator is a tensor operator with k = 1. The Wigner-Eckart
theorem implies as a special case that the matrix elements of any vector
operator V a between states of the same1 j are proportional to those of
the angular momentum operator Ja:

〈ω′jm′|V a|ωjm〉 = 〈ω′j||V ||ωj〉 〈jm′|Ja|jm〉. (13)

The reduced matrix element2 〈ω′j||V ||ωj〉 is given by

〈ω′j||V ||ωj〉 = 〈ω′jm|~V · ~J |ωjm〉/j(j + 1) (14)

for any m. To see this multiply (13) by 〈ωjm|Ja|ωjm′′〉 and sum over
m.) This is called the projection theorem. It corresponds to the state-

ment that the components of ~V orthogonal to ~J average to zero.

7. Useful fact: the trace
∑

m〈ωjm|Tk0|ωjm〉 of the matrix elements of
Tk0 (k 6= 0) in a subspace of given ω and j is zero. Proof: The trace
of a commutator of finite dimensional matrices vanishes, and Tk0 ∝
[J+, Tk,−1], which can be truncated to the given subspace since J+ acts
within the subspace.

1Note that the restriction to matrix elements between states of the same j is in general
necessary for (13) to be true, since the matrix elements of Ja between different j’s vanish,
but those of V a do not in general.

2The reduced matrix element defined in (13) is −[j(j + 1)(2j + 1)]−1/2 times the one
used in the conventional statement of the Wigner-Eckart theorem (10).
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8. Hole-Particle equivalence: In some ways, a shell filled with identical
fermions except for n “holes” behaves the same as a shell with only n
such particles. More precisely, let Tk0(i) be a single particle irreducible
tensor operator with k > 0, indexed by the particle label i. It can be
shown that

〈j2j+1−nJM |
2j+1∑
i=n+1

Tk0(i)|j2j+1−nJM〉 = (−1)k+1〈jnJM |
n∑

i=1

Tk0(i)|jnJM〉,

(15)
where |jnJM〉 is a totally antisymmetric state of n identical fermions,
each with angular momentum j, adding up to a total angular momen-
tum J and total z-component of angular momentum M . (For a proof,
see for example Nuclear Shell Theory, A. de Shalit and I. Talmi (Aca-
demic Press, 1963).)
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