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1. Use the variational principle to prove that any one-dimensional potential V (x) with strictly finite
range and

∫
V (x) dx < 0 has at least one bound state. Hint: For the simplest proof, consider a trial

wave function that is constant in the region where the potential is non-vanishing and decreases
linearly to zero outside this region. (This trial wavefunction has a kink, which contributes a
delta function to the second derivative. Alternatively, you can integrate by parts in the energy
functional, so as to express the kinetic energy contribution in terms of the integral of the square
of the gradient.) The variational principle is discussed in Sec. 11.2 of Schwabl.

2. (a) Find an upper bound for the ground state energy of the hydrogen atom using a three-
dimensional harmonic oscillator ground state wave function

ψ(r) = (
√
πβ)−3/2 exp(−r2/2β2)

as a trial function, with the width β as the variational parameter. Compare with the true
ground state energy.

(b) Compute the relative error in the approximate energy, (Eexact −Eapprox)/Eexact, and com-
pare this number with the norm ||ψexact − ψapprox|| of the difference between the (nor-
malized) exact and approximate wavefunctions. Explain the relation between these two
numbers. (Hint: See Sec. 11.2.)

3. Toy model of a helium atom, Qualifier, January 1999, II-2.

Two particles, each of mass m, are confined in one dimension to a box of length L.

(a) First consider the case where the particles are spinless, not identical, and do not interact
between themselves.
What are the normalized two-particle wave functions and energies of the three lowest-energy
states of the system? Are any of these energy levels degenerate?

(b) Suppose the particles interact between themselves with the potential V = λδ(x1 − x2),
where x1 and x2 are the coordinates of the particles, δ(x) is the one-dimensional Dirac
delta-function, and λ > 0.
In the lowest order of perturbation theory in V calculate the energies and two-particle wave
functions for the three lowest-energy states of the system. Sketch how the energy levels shift
relative to the energy levels of the noninteracting system.

(c) Formulate a condition on the coefficient λ for lowest order perturbation theory to be appli-
cable.

(d) Now suppose that the particles are two identical fermions, each of spin 1/2, interacting via
the potential V of part 3b. Explain how the Pauli principle determines the values of the total
spin of the system for the three energy levels found in part 3b. Write the values of the total
spin and the degeneracy next to the energy levels in the diagram of part 3b.

Possibly useful integrals:∫ π

0
dφ sin4 φ = 3π/8

∫ π

0
dφ sin2 φ sin2 2φ = π/4
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4. Thomas-Fermi model of an atom, Adapted from Qualifier, Fall 1981, II-1.

This model treats the electrons as a degenerate Fermi gas, and is discussed in Sec. 13.4 of Schw-
abl. It is treated here using a variational principle for the energy functional. Suppose the electrons
have a spherically-symmetric density n(r). The energy of the electrons can be approximated as a
functional of the electron density, E{n(r)}. The approximate electron density in the atom, n0(r),
is determined as the density that minimizes the energy functional E{n(r)}.

(a) Write down the (approximate) energy functional E{n(r)} for an atom with nuclear charge
Ze and N electrons. The functional E{n(r)} should contain three terms: (i) Ene that
describes the Coulomb interaction between the electrons and the nucleus, which is treated
as a point charge Ze; (ii) Eee that describes the Coulomb interaction between the electrons;
(iii) T that describes the kinetic energy of the electrons. [Hint: To find T in terms of n(r),
use (13.18) divided by the (local) volume V .]

(b) i. By varying n(r) in E{n(r)}, find an integral equation for n0(r). Take into account
that we are looking for a minimum of energy with a given total number of electrons∫
n(r) d3r = N . This constraint can be handled with the help of a Lagrange multi-

plier. Show that the boundary condition at r →∞ implies that the Lagrange multiplier
vanishes.

ii. By applying the Laplacian ∇2 to the equation obtained in Problem 4(b)i, find a differ-
ential equation for n0(r). Show that this equation is equivalent to Eq. (13.63).

(c) Find the ratios Ene/Eee and (Ene + Eee)/T in the Thomas-Fermi atom (that is, when
n(r) = n0(r) in Ene, Eee and T ). Find these ratios by using the variational principle, but
without explicitly finding the optimal density n0(r). Check whether the latter ratio is in
agreement with the virial theorem. (Hint: Consider varying σ in n(r) = (1 + σ)n0(r) and
n(r) = n0 ((1 + σ)r).)

(d) Does a neutral Thomas-Fermi atom have a well-defined radius R where n0(R) = 0, or
does n0(r) extend to infinity? What about a positively charged Thomas-Fermi ion? Can the
Thomas-Fermi method describe a negatively charged ion?
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