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1. The Dirac equation implies that the g-factor for the electron is ge = 2. This result can also
be obtained from the nonrelativistic limit of the Dirac Hamiltonian. For a charge e coupled to
an electromagnetic vector potential ~A(x) this nonrelativistic hamiltonian for the two-component
wave function is H = [~σ · (~p− e

c
~A)]2/2m. Show that this implies ge = 2.

2. In section 14.1.3 Schwabl computes the Zeeman effect in hydrogen for an arbitrary magnetic
field using the basis {|n, j,mj , l〉} in which the spin-orbit term is diagonal but the Zeeman term
is not. Redo the analysis using the basis {|n, l,ml,ms〉} in which conversely the Zeeman term is
diagonal but the spin-orbit term is not, and check that you arrive at the same result for the energy
levels.

3. The deuteron is the unique bound state of a neutron and a proton, both spin-1/2 particles. Since
the strong interaction is short ranged, there must be a large S-wave component in the deuteron
wave function, and in fact this wave function is a superposition a 3S1 + b 3D1. Determine the
fraction |b|2 of the D-wave component by calculating the magnetic moment and comparing with
the observational value µ = 0.85735µN (where µN is the nuclear magneton). The magnetic
moment operator for the deuteron (neglecting the neutron-proton mass difference) is

µ =
µN
~

(0.5L+ 2gpSp + 2gnSn) (1)

where gp = 2.79275 and gn = −1.91315. The factor 0.5 in front of L occurs because the neutron
does not contribute to the orbital part of the magnetic moment. The magnetic moment value
is the expectation value of µz in the state with maximal angular momentum in the z-direction.
To evaluate the expectation value in the D1-state, you can use the Clebsch-Gordan coefficients
to write this state in terms of products of L and S eigenstates. Alternatively, you can use the
projection theorem for vector operators. [I suggest that for practice you do it both ways, but that’s
not required.] (If you use the projection theorem method, I think you’ll want to show as a lemma
that Sp and Sn have equal expectation values in an eigenstate of S2, which can be shown using
the projection theorem for vector operators with respect to the total spin.) Answer: |b|2 ≈ 0.04.

4. The structure of nuclei can be approximately described using the so-called shell model. Inter-
acting nucleons (protons and neutrons) produce a self-consistent, spherically symmetric field of
the nuclear force. The energy levels of a nucleon in this field can be classified by the values of
the orbital angular momentum, the radial quantum number, and the total angular momentum of
the nucleon. This is somewhat similar to the classification of electron energy levels in an atom.
The neutrons and protons are fermions and therefore each obey the Pauli exclusion principle. The
nuclei with completely filled energy shells—“(doubly) magic nuclei”—are particularly stable,
similarly to the noble elements with completely filled electron shells. In addition to the common
nuclear potential, each nucleon has a spin-orbit coupling−2aL ·S, where a is a positive constant.

(a) How many nucleons can be placed in the lowest 1S shell of a nucleus? What is the name of
this particle?

(b) The first two levels of the nuclear potential are 1S, 1P (where “1” stands for the radial
quantum number.) What is the second magic nucleus? Explain how the counting goes.
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(c) Use the shell model with spin-orbit coupling to predict the spin and parity of the nuclei

1H
2, 1H

3, 3Li
7, 5B

11, 7N
15

(where the subscript denotes the number of protons and the superscript the number of nu-
cleons). Check your prediction by looking up the answer. For 1H

2 there is more than one
possibility, so list them all, and then select one by using the fact that, as a result of the “ten-
sor force”, the neutron and proton form a state that is antisymmetric under n-p interchange
(i.e. an “isospin singlet” state). For 3Li

7 there is also more than one possibility, so list them
all, and then select one by using the fact that the neutrons in the outer shell form a J = 0
pair.

5. Calculate the magnetic moment (in nuclear magnetons µN) of the 15N nucleus, for which one
proton in a P1/2 state is missing from a closed shell. (The measured value is -0.28.)

For the purposes of this calculation you can treat the hole state as a single spin-1/2 particle state.
[The relevant general result justifying this is discussed in point 8 of the Tensor Operators sup-
plement. I think in the present case you could argue that the 1-hole state can be combined with
a single spin-1/2 particle state to form a singlet, so the 1-hole state must “behave as” a single
spin-1/2 particle state. But this argument seems a bit too facile, because there is a potential sign,
or phase factor that could enter. Eqn. (15) in the Supplement indicates that only for odd integer
values of k is the sign in the particle-hole equivalence for the expectation values equal to 1. For a
vector operator, like the magnetic moment, k = 1, which is indeed an odd integer. Please let me
know if you can think of a simpler, direct argument justifying the + sign in the present case.]
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