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1. Problem 11.1, Schwabl. (Use units with h̄ = m = ω = 1, and use Schwabl’s hint.)

2. Problem 11.3, Schwabl. (Use the x and y ladder operators. N.B. also ω = 1.)

3. Consider the Hamiltonian H = H0 + V of a three state system, with

H0 =

 0 0 0
0 0 0
0 0 1

 , V =

 0 0 v
0 0 v
v v 0

 . (1)

[2+1+5+2=10 points]

(a) Find the exact eigenvalues and eigenvectors of H.

(b) Expand the exact eigenvalues and eigenvectors to order v2.

(c) Use degenerate perturbation theory (with V as the perturbation) to find the
first and second order energy shifts E(1) and E(2), and check that they agree
with part 3b.

(d) Find the eigenvectors of the second order secular equation and compare with
the v → 0 limit of the exact eigenvectors. They should agree.

4. Consider a two-state quantum system described by the Hamiltonian

H =

(
E + U ∆eiφ

∆e−iφ E − U

)
, (2)

with E, U , ∆, and φ all real. This is the most general hermitian 2 × 2 matrix.
[2+1+1+3+3=10 points]

(a) Find the exact eigenvalues and eigenvectors of H. (Tip: Expand H in Pauli
matrices and use what you know about them.)

(b) Sketch the eigenvalues as functions of U when U changes from U � −∆ to
U � ∆. Notice that the energy levels “repel” in the region U ≈ 0 where
they would cross if ∆ were zero.

(c) Expand the exact eigenvalues to lowest nonvanishing order in U/∆ when
U � ∆.

(d) Considering the ∆ terms of the Hamiltonian (2) as a perturbation, compute
the first and second order energy level shifts using non-degenerate perturba-
tion theory (assume U 6= 0.)

(e) The approximate eigenvalues of parts (4c) and (4d) do not agree when 0 <
U � ∆. Explain why non-degenerate perturbation theory does not give
good results even though the unperturbed eigenvalues are non-degenerate
when U 6= 0.
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5. In most calculations of atomic energy levels the nucleus is taken as a positive
point charge Ze. Actually, the nuclear charge is more accurately represented by
a uniform charge distribution reaching to a radius of about Z1/3 Fermi. (1 Fermi
= 10−13 cm = 2×10−5 Bohr radius.) [6+2+1+1=10 points]

(a) Calculate the correction to the energy of a 1s electron due to this nuclear
size effect. How does this correction depend on the nuclear charge Z? (Note:
You can simplify the calculation by noting that the nucleus is much smaller
than the Bohr radius, so the wave function is approximately constant inside
the nucleus.)

(b) What is the ratio of the nuclear size effect to the hyperfine splitting of the 1s
level as a function of Z and the nuclear mass MN? (See (12.40) of Schwabl.)
What is the ratio for hydrogen? Assuming MN ∼ 2Zmproton, I = 1/2, and
gN ∼ 1, at roughly what value of Z do these effects become comparable?

(c) What is the ratio of the nuclear size effect to that of the Darwin term? (See
(12.22) of Schwabl.)

(d) Why is the shift for the 2p state is negligible compared to that for the 1s
state?
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