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INTRCBUC TION

Certainly one of the most interesting problems of modern
phyeics, on the frontier between gensral relativity end elementary
particle physics, iz the description of grect maosses of matter which
have reached the endpoint of stellar evolution by e%hausting all
thermonuclear sources of energy. Unable to sustain any internal
pressure by thermonuclesr reactions, these messes of matter or cold
stars must now pay sttenticn to the gravitational curvature of space-
time which ceuses their collapse. Although a grest deal of previous
work has been done on this problem, there is a consplcuous lack of
agreement on the conclusioens which should be drawn. J. A. Whesler
has said that one simply does not know the fate of a compact essembly
of cold matter, catalyzed to the endpoint of thermonuclear evelulicn,
when the mass of that assembly exceeds about 0.7 times the mass of the

% . oy s -
aun. He goes on teo point ocut that the problem is one of principle,
having nothing directly to do with the actuzl course of thermonucleer
evolution. If evolution of a star continues long enough, the star
simply cannot eject matter, radiate photons, or emit neutrinos. It
comes into the absolutely lowest state possible for a many nuclecn
system under the dual actlion of nucleoar and gravitational forces.
Thies is the state which is of interest. Therefore, he poses the
guestion, "What is the final eguilibrium state of an A-nucleon system
under gravitational forces when A is large?"

But perhaps this begs the question? There might not be any

equilibrium state! This was the proposal advanced by Oppenhelmer and

Snyder who showed in 1939 that when all thermonuclear sources of




energy are exhausted a sufficiently large star will collapse, contract-
\.?./
ing asymptotically to its gravitetional radius 2m3/c2. The total time
for the collapse to take place is Pinits for an observer comoving with
the stellar matter but infinite for an observer sxternal 1o the stellér
matter. Light from the surface of the star is progressively reddened
and can escepe over a progressively narrower range of angles. Consé—
quently, the star effectively "cuts itself off from the rest of fhe
universe®. |

Certain objections have, however, been raised concerning the

. ; -
above analysis. J. A. Wheeler points out that

(1) No mechanism of release of the gravitaticnal energy into
the surrcundings is taken into account; so that this approach rules
out by definition any avproach to equilibrium if one exists. The
mass of the system as viewed by a distant cbserver remains forever
the seme. In actuality the constituent particles must cellide, give
off heat, lose speed, and slow down thelr contractiion.

(2) The particles are envisicned as falling inte a K. Schwarsz-
schild zingularity, but this does not give an adequate representation
of the forces sustained by a particle at high compressicn. Therefore,
it appears thet any answer is incompletle which does not consider the
ultimate constitution of a nucleon.

(7) The particles are envisaged as "eutiing themselves off
from the rest of the universe". This zeems %o suggest that the par-
ticles lose their effect on the rest of the universe. But the discus-
sion demandeg at the same time thet they meintain en unchanged grav-
itetional pull on = distsnt test mass - the direct opposite of losing

their effect.




Un the other hand, if one sccepts the existence of a finel
equilibrium state for an A-nucleon system when A is large, ons gose
on to ask, what happens when anocther handful of nucleons is added 1o
this equilibrium configuration. An analysis geems to indicate that
the added mess must be radlsted away, and in fact that a system of
eriticel mass zcis as & catalyzer, which can aitrzct nucleons in
from the outside and dissclve an equivalent number of nucleons away
et the center into radiation, in order thatf the totsl number of nucleons

¥ )
remain below some critical number. This precess would be comnetible
with the principles of conservatilon of energy and conservation of
mementum, but it vielates conservation of nuclecns.

Thus, no matter whether one believes in the lack of = final
equilibrium state for ean A-nucleon confipuwration or in its existence,
certain undesiratle cemplications arise. In this paper we shall
consider the problem frow Oppernheimer and Snyder's point of view
that no equilibrium state need exiet, so that the problem is essen-
tially dynamic. It seems advisable at this point to reply to the
eriticisms against this approach raised by J. A. Wheeler. These
replies seem, to the author, net really definitive, but rather
tentative groping toward & more comprehensive snaelyeis of this problem
which may eventually lead to better understanding.

(1) While it is true that no mechaniem of release of grav-
itational energy is considered, it seems quite possible that, for aﬁy
solution similar to that of Oppenheimer and Snyder, the null cones
of particles at the surface of this mass configuration might collapse
in such & manner that very little or no energy or matter cculd escape.

An interesting discussion of one aspect of this problem can be found




&
in A. P. Millsf thesisf/ He considers the itrajectories of phetons

emitted from the surface of a star and shows that in certain cases
the photon shoots out from the star, circlss around it several times,
and then falls back in. It is clearly true that the energeticelly
easlest escape for matler or energy will be along a radial geodesic.
3o we might expect that there would ﬁz:a smell cone of directions
about such redial geodesics along which matter or energy night be
eitted from the star. Therefore, it seems ressonable that the amount
of matier or energy which could escape from the mass configuration
would be so small as %o be negligible. This is also indicated by
Oppenheimer and Snyder when they point out that esceping light is
progressively reddened and can escape over & marrower end narrower
rangze of angles.

(2) It has been shown that there is & limit of mass on the
order of 0.7 times the nmass of the sun, above which there is no
equilibrium configurstion for a mass of cold matter catalyzed to the
endpoint of thermonuclear evolutionf; The pressure at the center of"
the configuration necessarily becomes infinite as the mesm is incressed
toward this finite limit and at the center the separation between
positive and negative energy states goes to zero. The imporiani
point is thsi, although the details of the transition depend wupon the
ecuation of stete mesumed, the existence of the effects does notf
Censequently, in this essay a very simple eguation of stete will be
used, which, although it neglects the forces esustained by = particle
under great compression, maey nevertheless lead fo valuable insights

into the nature of the effects themselves.

{3} This last objection seems most simply undsratood by an



exemination of the avpearance of any dynamic solution to the config-

(=1

uration problem in ths coord

?(m

ing the Schwarzschild metri Tt will be seen in the sequel that the
central configuration will maintain an uachanged gravitational pull
on a distant test mass, slthough it cen no longer emit any significant
amount of energy which could be percelved by an exterior observer
situated ot the test mass. Furthermors, the extericr observer can
in no way influence the central configuration afier scme definite
eritical time. But since the dynamical solution is asympiotic in
neture, it would seem plausible that the gravitational gffect of the
central confipurstion would approach some limiting value different

from zers in the same wey that the radial coordinate aporoaches the
v bE

gravitational radius of the configuration as limit.

W

Since the fate of a great number of nucleons under the action
of their mutual gravitstional atiracticn still seems very mueh in
doubt, perhaps it would be advisable fo turn st this point to the
simple models which are discussed in detail in the ensuiag chasters.

our resulis will parallel meny of those cbtelned by Oppenheimer end

snyder although our epproach and snalysis will bs rather different.

nate system obtained by Kruskel in gxtend~-



SPHERICAL AND HYPERSBOLIC UNIVERSES

In thie chapter we shall discuss universes which are isotropic
gnd homogeneous in space &t eny moment of time. The properties of
these universes, first studied by A. Friedmgnn in 1922, will bs sum-
marized rather than derived since details are available in standard
texts%y First a reference system 1s chosen which woves at each point
of space with the matter at that point, so that, since there is no
mass flux in any direction, space will be isotropic. Then the timelike
coordinate is chosen so that, at suy given momenti, the density of
matter will be constant throughout space. These assumptions lead to
g metric of the form
(2-1) dt? = 4t% - a4t
Since the density is constant throughout space, space iz characterized
completely by a single curvature parameter A which is positive for
spherical or bounded space and negative for hyperbolic or unkounded
space. One may introduce sphericel coordinates X, ©, end € in the
spherical space, which may be regarded ag the surface of & hobell of
radius @ as indicated in figure 2-1. Similarly one may introduce
hyperbolic coordinates X , € , and @ for unbounded space as indicated
in figure 2~2. The metrics for these spaces may then be readily com-

puted. They are, respectively,

(2-2) dx* = dt° - Py [dx® + sint X (d8F4+sinte do*) |

(2-3)  dr? dt® - arx) [AX* + sinh®X (de® » s\nte dg?) ]
where & ig, in both cases, the radius of curvature of the 3-space.

The functional depsndence of a upon % must be determined from the

gravitational field ecuations and the equations of state of the appro-




FIGURE 2-1

The equation of & 3-gphere in Euclidsan 4-space is
= =
S 2y

*
+ Xy r Xy

= Ow
By conbining the %, and x. coordinates along one exis we arrive

et the following pictorial representation of & 3-sphere:

X|,x:_

Certain other coordinate representations may be used in placs of

the Cartesian one, as is partially indicated above. These are:

Ki O Sl X S0~ O sin @ FSia® Siin @
Xy G oStia X St B coscey s @ cos @
K3 o staX cos © Tcox®

Xy

T
o Cos X lo~ -t

The indices used to dencte the varicus coordinates as well as the

values which these coordinztes may take on are indicated below:

pa Lo 13
2 e Lo, or 1l
3 <@ (o an ]

The index o©

is reserved for timelike coordinetes throughout this
paper.




FIGURE 2«2

The equation of a Z-pseudosphere in Minkowski H-space is
1 * L
X\ %D . xy - Xy = -a

By combining the x. and x, coordinates along one axis ve arrive

at the following pictorial representation:
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Gertain other coordinate representations may be used in place of

the Cartesian one, se is partislly indicated above. These are

' & sinh X ShB sin @ Fesnd sin @
Xy , asinlh X Sin® cos C 5(n® cos @
K3 a sink X cos O Peas B
b S o cosh ¢ i o+ gt

The indices uszed 4o denote the various ceordinates as well ag the

values which these coordinetes may take on are indicated below:

t x Lo, o]
2z & Lo, w7}
3 < Lo, 2m]




priate universe. If we assume that the universes are filled with

non~interscting dust, no prersure or momentum—flux terms arise in

the energy-momentum tensor'T:} whose only non-zero component is

(2-4) Te = ¢

The field equations are accordingly

{2-5) R - TR = 8we

Units will always be chosen so ithat the speed of light and the grav-
o

itational constant are unity. Making use of Dingls® formulas, after

some long caleculations we find that for spherical universes
o - |} - B r . da. - 2,3
(2“6} R r R = - L‘I + (-—? _i
and for hyperbelic ones
- EA A
e ) = B oi{de)T Loy
(2-7) Ro = 3 R a L(dt)

If we now solve (2-5) and (2-6), we obtain the following parasmetric
relation between @ and % :

.
(2-8) £ = oo

1

he (1 + s W )
{ W+ sin w )
similarly, (2-5) and (2-7) lead to

o = e [ ¢osh 0 - Y O

(2_9) t = e 3Sinin @ - ) 2

In both cases,

( 2=10) Qo

[
lF
4
0
&

where it has Leen assumed that

B
-
[

——
&
iy

{2-11) ?
which we shell now justify. In our universes no matier is being

created or destroyed so the total masses of the universes must remain



\0

constant. If vwe find the volumes of the universes as  functions

of t and multiply these by their densities, which we already assumed
to be constant throughout the space at any particular instant t© , we
ghall obtain their total masses. This will provide us with relations
comecting ¢ end o. which reduce to (2-11). For reasons which will
become evident in the sequel, we shall assume that the universes

are spherically symmetrical but confined to the regisn:

{2~12) o= x = Xo

Then the volume of a spherical universe will be

(2213 v = {.°]

a® sin?y sin ® dg 4o dax

(2—14) v = Ll'rra,,-'i* [ Ya 3in Z%s }

For a hyperbelic universe

L E]

(2~15) v = [“' (W C" a® s\rh®X 3 ® de 4@ dyx

and carrying out the integration

- -y sinh AXo - _X_e.
(2-16) v = Yrwa [ —a = }

If we let Mg be the toital mass of the universe in either case, then
(2—17) P = Mg /v
end it is clear that this equation reduces to (2-11) where for spher-

ical universes

M
(2-18) -?° = ™ (ZXe - sin 1?‘5.)
and for hyperbolie ones

Mg
(2-19) g = ™ (3inh 2Xe ~ 2Xa)

Now (2—10} becomes, Ffor the respective cases,

UM

(2-2@) [/ WP Y =
3(2%e ~ sin Z2%a)




il

KM

(2_21) %a = Z{(sinh 2ZXae - 2Xo )

Returning to (2-8), we ses that one cycle of expansion and
contractlion ¢f ths spherical universe is described by allowing the
parameter « to range from -7 to + T . Similarly in (2-9), one cycle
of expansion is described by allowing w to renge from 0 toew . It
should be noted, however, that the assumpiions which led to the con-
clusicn that the only non-zerc component of -rﬁ wa.s 7‘: break down &s
. approaches zero, so the full range of the parsmeter may not be used,

Since dust particles in cur Friedmann universes are at resi
relative teo space, they descrilbie timelike geodesics-along which the
coordinates X, 8 , and ¢ are constant. Now let us introduce coord-
inates with rediel significence in the spherical end hyperbolic uni-
verses. Referring to figures 2-1 and 2-2, we see that the proper

choices of radial coordinates for these universes ers respectively

a swn X

"

(2-22) v
(2=23) - 6. siabh X

Then the parsmetric squaticns (2-8) and (2-9) for a as a function
of ¢ determine v 25 & function of € , thus determining the radial
geodesics followed by & test partiéle whose X , © , and ¥ coord-
inates remain constant. The unit tangent vector Tield to ihese

geodesics in elther universe must be
s

2

(2-24) €s = e

For spherical space we can chcose three other vector fields to complete

an orthonormal frame in the following manner:

> - L3
(2-25) “ T T %
(2-26) c = ! 2

i asinX ©8




2

3
(2=27) €s = asin X sin & 2@

For hyperbolic space the corresponding vector fields are

- 1 . )
( 2-28) & = = 3%

- ! 2
(2-29) €. = a sinh X 20

- | Y
(2~-20) € =

asinh X sin® 2%

Anticipating later developments, we note thet in either universe

&, 1is a vector field orthogonal to eny manifold determined by

the condition

(2-31) x = Xo




THE SCHWARZSCHILD METRIC

It is well-known that there is & coordinate system in which
the metric produced by a centrally symmetric distribution of matter
in the empty space surrounding this matter is statich If we intro-
duce spherical coordinates © , © , and @ TFor the spacelike dimen-

sloans and © for the timelike cne in the customery menner, this

metric, as Schwarzschild first discovered in 1915, can be written

12,
in the following form ™
M z - Bt . a
(1) ov = (P TE)est - (10 BE) drt - et (g0 rsinte gt

where Mx 1s a constent of integration which ie identified with the
mass of the matter in the centrsl distribution in order that the
relativistic field §quations reduce to Newton's law of gravitetion
for large values of the radial coordinate ™ . It is to be noted
thet this metric is singular in space at » = 2Mx , Ffor then the
coefficient of drn® becomes infinite. We shall discover in the next
chapter that this singularity may be removed by a suitable coord-
inale transformation. After the transformation the metric #io longer
remains static but changes with time and develops an intrinsic sing-
ularity after e finite proper time.

Now let us find the eguations of motion of a test particle
traveling along a radial geodesie. Since both € and % are constant

along such & trajesctory, the metric is simply

(3-2) at: = X 4%t - X"\ 4np?
where
ZMy
z X = i ——
(2-3) -




i

The geodesics are determined by the variational principle

(3-4) § [ 4r = o

which is equivalent te

(5-5) 5] fde - @

Denoting differentiation with respect to - by a dot, we may sub-
stitute (3-2) in (3-5), obtaining

(3-6) s [(xt% - x' k%) dr = ©

Since we need only one condition in additicn to (3-2) to determine
the radial geodesics, the simplest procedure is to vary + in (2-6).
This leads to the egquation

(37 ((xt §%) 41 = o

and efter integreting by partis we have
¥ .E-"_ i 5t a =
(>-8) g L & (%% 1 e ©

The:efore,

(3-9) xt o= oo

where & is = ccnstant éf integration analogous to the energy of
the test particle. It will be called the rodisl gecdesic energy
parameﬁer. We may now write (3-2) as

(3-10) Xt* - x7er o=

and use (3-9) to climinate t , which gives

(3—11} = = hd id.a. - X
Menasse obtained the following parametric solution for {3-11), assum-
¥
ing o<l .
r - ...."\_4_."' (l + cosu))
§ -t
(3~12) "
B S . S (W 4+ sin )}

(‘_Ml:,z




On the other hand, if « =1 s the solution is

r = M (cc-&h w -\ )
o
(>13) g _
T = * {sinh w - w)

(a=-1>"
We can set up an orthonormel frame at each point of the redial
geodesics by using the tangent vector fields Go to these geodesics,
the unit vector fields €; and &galeng the ® and @ coordinaie gra-
dients, end a fourth vector field & detsrmined by the three already
chosen. It is immatsrial whether the energy parameter & is greater

than or less than unity. The required vector fields are:

. 3 2
(3-14) & = T x T O %
. L 2
(5-15) € = + e
(2-16) g = . 2

This leaves
o~ = '3; a_
(3-17) “© 2 vk YT

where @ and Y are to be determined from the orthonormality require-

ments:
(3-18) Xt - xM oyt .y
(319) X - xvi¥ = O

These may be solved readily to show that

+
>
+
3w

(3-20) e = X'r

r
13%:

i
1

R
AL

iy ST
I e L L e

I% is to be noted thet & 1is orthogonal to the manifold generated

by a particle free to move along radial geodesice and € and %

grrepe e
SRR S o e L




cocrdinate curves. Also (3-14) and (3-20) may be rewritien using

(3-9) end (3-11)

(z-21)

(3-22)

—

<,

\o

in the following manner:

-
- = 2 * {ar-x 2
B x 2% ar

— —

=  dat-x 5 . . 2

X a2t or

e e e e -
e BT S S

st

T A

[



THE‘KRUSKAL EXTENSION

We shall now investigate the singularity in the metric (3-1),

which we recall was

TRV FY z .
(4e1)  drt a (1o EEe) 4t - (0T et ort(det e sinte ge)

It is apparent that the coefficient of dr' becomes infinite at r= amx,

but it has long been known that this is due only to the choice of
3 '
coordinates. The proof of this statement may be based upon the fact
5

that the curvature invariants ere not singular at r= Zth\: but it
ie ﬁore convincing to note that the geodesic equations detsrmined by
{(4=1) show & singular behavicr only at r= C>{% The source of the
difficulty in (4-1) is that the radial null-cones collapse at v= 2k ,

as may most easily be sesn by finding the tangent vector fields to

the null geodeslcs. 4long radial null-cones

(4-3) o = (1= M) s o (1o 3T e
or i
(4-3) 4t = t (l-— z.‘%)—idr-

so the tangent vector fields &, and 2. are

wl oy Py

- 2 s P L L S
(4-4) €t = Y ( ™ ar -
-
Now as ™ +tends to ZMk , €+ and €- collapse into :§£ ; consequently, ;

the null-cones collapse. This suggests that a transformation to a
spherically symmetric cocordinate system in which radial light rays
everywhere have slope £t will prevsnt the null-conss from ccllapsing
and, for that reason, will eliminate the singularity in space at T= 2Mg,
Therefore, we look Tor a transformation of (& , r ) into (v , v )}

-~ w2
sticl that €+ ond €. in the nev coordinates will e proportional to

\7



\g

the vectors 5: * sL respectively, which means that (4-1) will
become
(4"5) 4ttt = fl(dv"? P T*(d8* ¢ s/ e det)

Kruskal has found that if we require § to depend upon r s&lone
and to remain finite and non-zerc for w= v = e , the following
essentially unique equations of transformetion between the exteriocr

Schwarzschild coordinetas v2 aMg , and the quadrant w > lv| in the

i1
A
plane of the new coordinates are determined:
T T +
= — e _— Cosh - 3
(4-6)  w i o (7o) e (E
C r " t
he - \l -1 e — simla (-—- ‘)
( 7) v N2 * ¢ (‘*MK) 4 M

The new coordinates give sn enalytic exitension of the limited reglon
of spacetime which is described without singularity by the Schwarzschild
coordinates. The metric of the extension joins smoothly without sing-
ularity to the metricat the boundery r= zMw. As Kruskal goes on to
point out, this extension is maximal in the sense that now every
geodesic either runs inte the barrier of intrinsic eingularities at

Fe O or is continuable out to infinity. The extension has & top-
clogy £%x R' and conmstitutes a "bridge" between two Euclidesn spaces
as was earlier sought by Einstein and Rosen. A diagram showing corr-
asponding regions of the (% , » ) and { v , w ) plenes has been repro-
duced from Kruskalls paper in fipgure 4-1. From the form of the trans-

formation 2 can be found, snd the new metrlic becomes
3

3
Iz M - ' .
(a-8) vt = Mo (T )(avtoant) - et (dotiainte det)
r 2

Although ©  has lost its interpretation as radlal displacement, it




FIGURE 4-1

& THMg

In the region w > vl

r T £y
- [ + r . \ > ex —_— T wWey
w s ‘l 204w “P(:\T&h) “‘hkm'u) LT-MI‘ ¢ 2™k
r r + X v
_— .\ ex — cesh (—- ) = al‘c'ﬁ'-.!hh —_
vE v 4 (Auu Yre My “
3}

I8 - ¢
f‘ - B_t‘_"f exyp K \
r Mg

In the (w , v ) plane, curves of constant ¥ are hyperbolas asymp-
totic to the lines ©=2Mw yhile ¥ is constent on straight lines
through the origin. The region ¢» 2Mw corresponds to the region
w > (vl « The metric is entirely regular in the entire region be-
tween the two branchss of the hyperbola r= o . The radial null
geodesics are lines with slope £V  in the (w , v ) plans. Tote
that if a particle crosses the r:= 2Mw line into the interior, it
can never get back cut but mist inevitably hit the ‘irremovable sing-
ularity at r=o , To obtain formulas valid in other regilons, the

Polloving replacements are to be made:

w e lvl ~ o dv v oy oL -v » lwl
“ - LA v -V
v -V “ — -
< L - P
Mk Mk 2Mk LMK




stlll provides o meassure of space in the sense thet if we choose

any spacelike surface determined by ¥ = v¥p and at each w calcu-

late the circumference of the © =:% section of this surface, we
find that

am
(4=9)  circumference = {4*-5 = So r d® = amr

Consequently, as one moves along the surface toward w=0 , the
circun™erence decreases to 2 miaimumm values. Figure 4=-2 shows this
CE %; section, the bridge between two Euclidean spacss. Ii is elso
cleer from figures 4-1 and 4-2 that,as v increases, the minimum
circumference of the bridge will decrese to zarc and the two Buclidean
spaces will separate from one another. Thus, a metric previously
regarded as singulsr in space apd regular‘in time is more propérly
regarded asg regular in spacs bﬁt intrinsically singular after some
finite proper time! Paradoxically, however, no signal from any
point whose coordinstes satisfy ¥ » iwl can ever reach an observer
loca.ted in the region © > Mk, so this exterior observer will never
perceive the sinsularity at r= © , not even in an infinite preper
timel

As was remarked earlier, the squations for geodssics are
singular only at v=zo , so the radisl geodesics which were determined
in the previocus chapter (%-%0) may be continued into the extension.
Some of these geodesics have actually been caleulated and ploited

g

by Re Fuller and J. A. Whseler. Their results are indicated in
figure 4~3. The symmetry of timelike geodesics about the v -axis

is to be noted.




FIGURE 4-2

£

A bridge connecting two Euclidean spaces

al




FIGURE 4-3

Radial geodesics in Kruskal ccordinates

Symnetry of timelike geodesics sbout v -axis
v

22,




SOME DIFFERENTIAL GEOMETRY

Before plunging ahead with theorstical consideretions, it
would be advisable to highlight the idems involved by a simple model.
Imagine a ping-pong ball blowan up to a gfand scale so0 that its radius
ie the mean radius of the orbit of the earth and let the center of
the ball coincide with the ceater of the sun. The surface of this
ball is then a sphere which seperates space beyond the earth's crbit
from space within that orbit. If we now leave the ping-ponz ball in
place for some iims, it is clear thet the =surface of the ball will
generate a certain three-dimensional manifold in spacetime. "Within"
this manifold is a four-dimensional manifold generated by space inter-
ior to the orbit of the earth, and "without" is the four-dimensionsl
menifold generated by space beyond the earth's orbit. The words
"within" end "without" may be misleadinz. What is meant is simply
that any spacetime geodesic curve which connects e point "within"
to one "without" must have at least one point in common with the mani-
fold generated by the surface of the balli Now suppose that interior
spacetime has been separated from exterior spacetime, much as if one
had cut an orange in half and then physically pulled the halves apart.
The manifold generated by the surfemce of the ping-pong ball now serves
as the entire boundary for both interior and exterior spacetime,rbut,
since the spacetimes have Leen separated, there are two .identical
copies of the boundary manifold, one for each spacetime. Using the
orange 2s an example agaln, the assertion is simply that one slice
produces two boundaries, the right end the left, which are necesarily

identical in size and shape. This is indicated pictorially in figure
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5-1, in which, 2t the bottom, the orange U with slice B ie shown,
and, at the top, the right half has been separated from the left
half so that Bl and 82 are identical copies of B. Evidently, this

whole process may be reversed, for we need only begin at the top in

figure 5-1 by Fitting U1 and U2 together by matching B, to B2, where-

1
upon we once again have a whole orange. Eut, since we are more int-
erested in universes than oranges, as the notation in the figure
probably indicates, we return to our ping-pong ball universes to
note that the exterior and interior spacetimes, which we separated
earlier, can be put back together merely by fitting their boundery
menifolds itogether.

Now our probler can be formulated quite succinetly. Given

two universes Ul and U2 with boundary manifolds Bl and B what

2’
conditions must be satisfied in order that U1 end U2 cen be fitted
together to form a single universe U by matehing Bl to Ba? More
particulariy, can a Friedmann dust-filled universe be regardad,.

at any given moment, as an ordinary ster embedded in an otherwise
empty space, that is, in a Kruskal universe! The Friedmann universe,
at & given instant, would then correspeond to the interior of the ping-
pong ball which was discussed before, but the surface of the universé
at this instant and, conseguently, the manifold generated by the
surface in spacetime would still need to be defired. Analogously,

the Kruskal universe would correspond %o spacetime outside the
manifeld genercted by the surface of the ping-pong ball, and a boun-
dery manifold for this universe would also remein to be defined.

The remainder of this chepter will be devoted to answering the first

of these questions, namely, that of finding ccnditions on Bl, Ul, Bo,
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and U2 allowing U1 and U, to be joined , and to simplifying these cone

2
ditions to fit the special cases which will occur in msatching Friedmann
and Kruskal universes. The next chapter will show how the boundary
manifolds for the Friedmewnn and Xruskal universes must be chosen to
satisfy the conditions for matching.

~ - Although our results can be generalized to Riemannien mani-
folds of higher dimension, we will henceforth suppose thet Ul and U,
. are Pour-dimensional and that Bl and 32 are thres-dimensional. Greek
indices will range oﬁ 0,1,2,3; Latin indices, on 1,2,3. We further
suppose thet coordinates Kf and x:‘kmwe been introduced in Ul and U

2

and that the manifelds B, and B2 are determined parametrically by

A _ M - -3 -3
Xy = X %Xy, Xy, X3 )

(5’"1) ~ -~

v - -3
7‘1 Ka, (x?-- x:a K'I.)

"

Also we suppose that the manifolds Bl and B2 are to be identified by

requiring that

=4 —_
{5~2) L e Xe
In each space the choice of coordinates determines the metric
2 A o
dat, = ‘ﬁﬂ* dx, dx,

(5= v
(5 5) dt:. = 11“‘9 M: dxa_

A boundary condition which seems physically reasonable is to require
that, after By and B, are identified and a coordinate system has been
chosen for U, the coefficients of the metric tensor of U in this
coordinate systen and their normal derivatives with respect to M

should be continuous acress Bse Let this bounéary condition be accepted.
Ye shall show thcot, to ensure its fulfilliment, we need only resquire
thet the first and sscond fundemental forms of By and B, be ident-

ical, if By corresponds to B, via (5-2) .
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The first fundamental forms of Bl and B, will be denoted

by I1 and 12; the second fundementsl forms, by II1 and IIQ. Then,
]

by definition:

= =. 4R axs

(puy 11T E SFD AR

. I = o .. df.“ die_

. 5 g_gu 2

where ax® ax’
L E v G .;—:: a¥ )
(5-5) - - x> 9xy
. = v 2 ==
35 o T

Next we will azcume that det(.‘i;& )_?"— © and det(;i;&) #O

since this ensures the existence of non-null vector fields in U1 and
kX
~

U?, orthogonal respectively to By and Bz. Denote these vector fields

by ET and E': . In our applications these vectors will be spacelike

unit vectors, so we shall make that assumption here as well. In terms

22

of §% and E: s 1'I1 and ZIE are defined by:

) I, = Ry 4R ax 3
(5 ) ) N d')_ti' di:,‘_
112 = ,_ﬂ..d z
where ax’e a..’_‘_.j
1“'\1 = - (§|>‘u",17 32‘{ 3,,'(":2
-7 3x %3
(5-7) N R

o

R

In these relaticns L etande for the covarient derivative of
My ¥ o -~

. , ? .
with regpect to % and the relevani Gpud - Let us now assume thet,

after the identification (5-2) hes been made, ‘5;3 = 3_%,\\ and that

.-Q-'."3 z ,Qﬂ . TDrop the subscrinis so new for B in U

R = “‘-l = ;’—‘:- 7

—_3 - - — - Sy
(5-8) % = \%\i - "%'\\
.f'f.'.\'\ * “Q""l‘s ) rQ-.'.-l
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Introduce X* as coordinztes x* in U and sdd a fourth coordinate

(-

x

as follows.

In 2 sufficiently small neighborhecod of B we can con-

struct geodesics orthogonal to B so that each point X in B uniquely

determines =z single gecdesic.
sured =long this geodesic from

inates for U ares

x = 5

x! = ®!
(5"9) ot - x>

x? = %3

It follows that the

(5-10) dt* = - (ax®) "

and thet

(5-11) g4 = %
?.E_M - % -~

(5_12) 2 E-" = kS

¥

(5-13) -r?-'u:x = - & M
and, by definition,
2
~14 § i = =&
(5 ) M ax?

1 we combine relations (5-11}

r

1

(5-15) iy

M

rom (5-10) it is clesar that

(5-16)

oV

So?

o Py v
5-‘_ 5\5

Lel x° Le the spacelike interval mea~

the point ® in B. Then the coord-

(dx' = dx* = dx3 oY

interval in U is given by

+ q‘d ax® dx.'*
- 2
axe
?K.q 7
. = 3%
oxd 4

ax“ ax’
» - o
2X Y RV
»
t»* g A

to (5-14), we find that

v
)
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and, consequently,

o .- L%
(5-17) -n-‘-“) = F"L\ = F‘é:o 2 ax°
Thersfore,
' &35 3Z;
‘3 = % Y3 = - Zn—'\ !

Thie shows that the coefficients Que 21'E continuous across B and
that the normsl derivative, that 1s, the derivative with respect to
x* , of Fuv exists seross R. UContinuity of this derivative follows
from the fact that the above reasoning sctually shows that the deriv-
atives from the left and from the right exist and are equal.

Let us now turn to considerations which will simplify (5-5)
and (5-7), thereby eliminating unnecessary calculations in the next
chapter. Qur coordinates xf‘ s X:‘ , 3:5' s ?.". will always be ortho-
gonal, which is to say that the off-diagonal terms in the meiric
tensors \1“, > 2Gue o .i-u' 3 ,_C'a-.& will always be zerc. We shall

always make the ldentifications

a, -— * L

Xl = X LY = SE Y
(5-19) 3 =3 a = 3
LI = X L 3 X -

in order to simplify the partiel derivatives eppearing in {5-5) and
{5-7)+ Pinally we note the following resul't%; If P(x*) and P!(x"+dx‘)
are nearby points of a hypersuriace Vn and if C is the geodesié in
Vn determined by these points, it follows that p s Ziven by
(5-20)  2p = M dxt dyd

is the dietance from ' to the geodesic of Vs, tangent to G at P.
Specializing to owr case, if the X' coordinate curves in B end B

2

are chosen to be geodesics of Ul and Ug respectively, then P in
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(5~20) must be zero and it follows that

AL = o




MATCHING UNIVERSES

In this chapter we will show how the boundary manifolds
for the Fricdmann snd Kruskal universes must be chosen in order that,
after coordinate identifications as in (5-2) have been made, their
first and second fundamental forms will be identical. First we
shall consider the cese of a spherical Friedmann universe and e
Krudkal universe whose radial geodesics are characterized by an
energy varameter e less then unity. Then we shall repeat the cale-
ulations for a hyperbolic Friedmann universe and a Kruskal universe
in which the paremeier e is greater than unity.

Since Friedmann and Kruskal universes are spherically symmetriec,
we expect our matching problem to be gquite similar to the ping-pong
ball anmslogue which was discussed earlier. Speeifically, we must
define & time with the same intrinsic significance in both universes,
_and then at any instant of this time we should be able to identify
radial coordinates in both universes in such a way that the spherical
surfaces FS and KS determined by constant time snd radius in the
respective universos will fit together properly. If we suppose that
the matching is possible, we sec immedimtely how to proceed. If the

universes are matched slong FS and _S at one partlicular moment, then

K

particles belonging to _5 and KS which are to be ldentified must

F
behave in the same way. We have alresdy seen that all particles in
the Priedmann universe move along redial geodesics. Hence ths counter-

parts in KS of particles in 5 must follow radial geodesics in the

F
Krusksl universe alsoc. This lezds to an obvicus choice for the time

perameter, having the same significance in either universe - mmely,
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proper time slong radisl geodesics! Referring fo our sarlier results

(2-8) and (3-12), we recall that the perametric equations for radial

geodesics were:

v: o = oo (1 * cos WE
F ) ' .
g = “, = he ( WF + $in g )
(6-2) “u D
KU" T = l—ﬂ-" (\1‘ Cos Al
Mw ( .
Te T Tuat fewor v @)

In order to identify Te snd Ty we must require that

(6-2) we = W = w
and
L a1’y
O~ 0 =
(6"5) (et 3

Equation (6-3) will be dizcuesed in detall in the next chapter; mean-
while, we will concentrate excluslvely on the maiching problem. IT
our universes, which have been matched by identifying FS and KS at
some time Te , are to remain matched as the time paremeter varies,
the manifolds B and B generated by S and

b K F X

first and second fundemenial forms, according to the discuszion of

4 must have identical

the last chapter. The equations of these menifclds ares:

(6-) B r - e (W ¢ zth W)
')C = KXo
e = e
@ = @
(6-5) i v - ()
™ = _‘:"_E-— {( t & cas w\
\—a
8 = 2]
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In (6-5), ®=

are reproduced beloyw:

T = M Cw & sdia W)
l-aty
(6-6) -u
-i; = éﬁ- = _E“‘."
dx X

We shall adopt

last chapter;

(6-7) FU: x®° = X %! -
' s x ** < =]
* - e
23 = (44
x3 = w
6-8 s o = ~
( ) KU x - x! = w
x!' = v
* - @
x* = &
*?3 e «®
S @

Recalling (2-2) and (3-1},

(6-9) U dc® = 4t -~ oI LdX* & siaiX (484 mhiodet) ]
Us drt = K 3tY - X7 drt - pr(aet+ snte dd')
U
Now combining (5-4), {5-5), (6~4), and (6-5) we find that
{6~10) g ot dw' . o' sint Xy (4B¥ & sint D deet)
= Ll 4w’ - PrY (40 + sint B atet)
%! \ -t

ere the first fundemental forms induced upon B end B by (6-9)

We now identify the coordinctes w R e s and W in FB and KB'
Since FI and I{I must be identical after this identification, the

following conditions must be sstisfied:

(6—11) r* = o g™ Xe
-
(6-—12) ——:—-- = G-L

TWd) just be determined from (%-9) and (3-12) which

the following notation when utilizing resultsfrom the
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We may concludes that

(6-13) st X, = -’
or
(6-—14) cos Xg = t

This gives us one condition from the two equations (6=11) and {6-12).

Ve take the o‘th'er condition to be

(6—15) r o= a sin Xe

which is eutomstically satisfied if (6-2), (6-3), and (6-13) are.
Now we will verify that if the conditions (6-14) and (5-15)

are satisfled .the second fundamental forms FII and KII of FB and KB

are identical. From (2-25) and (3-22) we lkmow that the vector fields

which are orthogonal to _B and B are:

F K
- P
r&. - a IX

(6-16)

—r
* _‘“‘I...x 2_ + o 2_
x %k ar

]

[ 3

This ellows us to evaluate the cos{ficients of the second fundsmental
forms, Fﬂ'.‘s and Kﬂ;") . UWe note that, as mentioned at the end

of the last chaptler,

(6-17) Fitn = w L= = o

since the © -coordinate curves in FB and KB are radial gecdesics
in their tespective universes. For the other components, from (5-1%)

and (5-14) we have

7
. 2% . 2 2x 2x7
P N L

For sll Friedmarm coefficiente, {6-16) allows ue to rewrite (6-18) eas

Y 2 7
(6-19) gfLi = S (L L ox” 24

18 37 2T 3% 3 Y S R >% )
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From (6-4),

X

]
( 5-20) 2%

so (6-19) becones

o dr 1 dr
t Pngu?ﬁ: Al T'n.gt PYrS

E ! a.i_# ?..5:?
(6-21) FLLiy = b mv aRt a4
Then, using (5~4) and (6~$), we obtain
Vogy . E'p 4 = ©
(6—22) F {1, kol ié-l r'or_ dud E °on,1 dw
at _ g a&& . o
F Fed " = %, T“;s ) = E Fo‘ﬁ,\ )
Also, '
i
¢ {122 = & T, = g Pany
\ - ]
(6~23) Ll = 5 s = % T
rdLay = % U4, G S R = o
From (&-9),
r\m.. ! = 3‘1 aa;? : a¥sin X cos X
G=24
(6-24) Uaq - -1 233 6" stnX cosX sivt O
[ z 2 X
" Consequently, using (&-23) and (6-16),
o ° ©
(625 2y o sin Xs casy
o o O Sih Ko tasXp SINEE
Next we turn to the evaluation of KQU . From (6-16) and (6-18)
we have:
Q.. . . ax A 2, ax 2
AR o XY BRI 2xT X' 2%
{6=26) v
° \ ?_K_ DX
+ (r:uf go + P/A? gl ) .afi. ?Q‘L
Then
- 9§, 4t _ 9%, dr re 4-*i+r'“';<"-t
(6-07) w3l = 38 dw S8 dw o1 o & or 71 duw




36

From (616},

W, . R o

(5~28) 2 ° 38
From {&6-9),
l-';'_ § \ = E‘ r‘oa.,l
6-2 [ ]
(6-29) re g, = § Mo
Therefore, {6-27) becomes
at
{6-70) Kk 2., = §° Cas0 an
But, egain from (6-9),
1 33 (X
Toz, o T - T =
(6‘51) Y S L =
12,1 R Y

and finelly

(6-32) xR = ©
Similerly, it follows that
(6-323) «f2w = ©

Returning to (6~20), we have

(6-74) ftan = Tl 8. F
(6-35) «Ray = T 8. 4
(6-35) WSas = T E, + Tl §,

since by (6-%)

G- 2% kT 3%
(6-31) Ry ox 3 3k’
From {6-9), we have
(6-35) £ {1:3 * st 3 =
so (6-36) becomes

(6-29) kL{lzy = O

o

|

o

Equations (6-34) and (6-35) may be written es

{6-40) w £ 1. g° Mas, o

%5° Uas, 0

(6-41)  wEe>

.§‘ r"a.t.,\
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Then, from (6&-9),

R L1 )
(6-42) Man, 0 = TR axe T e
- P 293 _
(6-42) P, o 2 T3 s °
- P4 -
(6~hk) Taa,, = -3 —-3:'_ - r
293> .
(6-45) Fas, = -5 5 = rewe
Using {&-16) we finally cbtain
O o O
(&-48) xSy o= o P e
o fa) ot syntB

Comparing (6-25) and (6=46) by mesns of the conditions
(6-14) and (6-15), it is clear that ..-R‘.L'\’ and «fuj are identicel
if the positive sign 1s taken in (6-14). This means that Xe< %_ .
The matching is shown in figure 6-1. Now suppose we asgume Xo"-'—;: s
so thet we must use the negative sign in (6-14). If we replace &
in (6~16) by -‘E we will change the signs of each component of
as is evident from (6-40) and (6-41). Once again Fﬂ:‘l end “'ﬂ'i-d‘
are identical. Put we must show that it is physically meaningful
toe align Fi which points outward from the Friedmann universe
with a vector field -,.% - which points into the Kruskal universe
and yet also points in a direction of decreasing © . This is
done in figure &-2. |

We now turn to the problem of metching a hyperbolic Friedmann
universe to a Kruskal universe in which radial geodesics are char-
acterized by an energy paremeter = greatsr than unity. The
calculations for this case will be sirsawlined considerably since the
procedure is practically identical to that carried out abeve. The
paremetric equetions {2-9) and (3-13) for radiel geodesics are listed

below for counvenlence:




FIGURE 6-1

| WRuSK AL

a‘\‘ll I,’ ]

The upper figure is a representation of the matching at soms instent
v=vs , The ® - coordinate has been suppressed. The lower fig-
ure indicates that part of Kruskal spacetime which is joined to the

stherical Friedmann universe. Note that in this diagrem xo‘-_-‘_- .

3s




FIGURE 6-2
1

KAvI kAL

asin¥Yg= P

The upper figure is a representation of the matching at some instant
vVave . The ©® - coordinate has been suppressed. The lower fig-
ure indicates that part of Kruskal spacetime which is joined to the

spherical Friedmenn universe. #Note that in this diagram Xa.? z
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gV o = o, (cesh '-"F“)
(.’ )_!-7) TF = 'b = [+ 'Y (“Hh w - UJ?‘)
Dm
r = Mr (cosh W - )
w O Coat-n
Mw (sinh Wk - W )
TK'-‘ ¥
(avr-r)'*

In order to identify T snd Tt we must require that

(6-48) Wy = W = w
and
(6-049) 2o 7 (=t ~t? 3

Equation (6-49) will be discussed along with (6~3} in the next

chapter. The equations for the boundary manifolds B and yB are:

(6—59) FB.' t = Geo (sl'l‘\b\ w - 9)
X = Xs
e = e
® = ®
t = t(w)

(6-51)  « BF

Mw ( cosh w1

-

o=
8 = ]
@ = @

In (6-51), * * WwW must be determined from (3-9) end (3~1%) which

were “
< = s (SI‘nh [ I o-\)
(u'-—\)”‘
(6-52) § o= 88 . =
a1t X

Using the seme notationsl conventions as before, we can easily eval-

uate the first fundamental forms for 11_‘.B and FB:
(6-53) I =  atdw' — o' sink® X, ( d8t & sint e d0Y)
KI 2 __E_;_ dw® = r? (40 Py osinm B det)

[- A
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hfter identifying the coordinates w , ©  and ® wes must haves

(6-5‘4) c* = a* sinh 't Xe
b =
car = [+ 9
(6-55)
It follows that ’
(6-56) simh*Xo =  &* -1
or
(6=57) coth Lo = T &

where the poeitive sign must be taken beceuse cosh is a rositive

function. This gives one condition from the two equations (6-54)

-and (6-55). We teke the other condition to be

(6~58) F 2 asinb X,

which is automatically setisfied if (6-48), (6-49), =nd (6-56) are.
The calculation of the second fundamental forms of FB and

KB proceeds exactly as before except that sin X and cos X are to

.

be replaced everywhere by sinh X and cosh X The final sesults

are: : . o

o
[#]
e Sl = o o svnh Xe coshX, . h 2
cos
(6-59) o ° asinh Ao Xosinle
. o
6-50 .= °
( ) K R‘é ° ro [=]
o o ot s‘lﬂze

It is apparent that (6-59) and (6-80) are identical if the
conditions (6~57) and (6-58) ere satisfied. The matching is shown

in figure &-3.




FIGURE 6-3
LY

Kavek &

The upper figure is a representation of the matching at some instant
¥ivVe . The ® - coordinate has bsen suppressed. The lower fig-
ure indicates that part of Kruskal spacetime which is joined to the

hyperbolic Friedmann universe.

o




CONCLUSIONS

In figure 7~1 we have combined the matchings illustrated
in figures 6-1 and 6-2 into a singlie Kruskal coordinate diagram.
The boundary manifold B of the univerce U obiained by identifying
U and KU along FB and KE trevels along one of the radial geodesics
PQR or STU. The path of en observer who maintains himself at a
constant "distance® fo from the center of the mass distribution is
also shown. This observer could be a psrson on = planet revolving
about the central "star" or Friedmann universe. Recalling that
null geodesics are lines with slope %V , we see that as the exterior
observer passes in the indicated direction along ABC hils proper tine
changes, increasing teward plus infinity, and he sees the boundary B
of the central Y"ster" asymptotically approach either Q or T depending
upon whether B éravels along PGR or STU, that is to =say, depending
upon the vaiue of %o chosen for the metching. This means thet the
observer sees T of B approach the limit ZMwx  asgympiotically. Also,
since a smaller and smalier element of path for B correséonds to
a greater and greater element of path for the observer as B nears
either ¢ or T, the visual megnitude of the ster decreases to zero
as the observer's prover iime increases withouit bound. It is to be
noted that, in contrest to the percepiicns of our exterior observer,
en observer located on the surfece of the star iiself would see the
star expand and then contract, becomipg singuler after a finite
proper time!l

Now let us consider equation (6-3), which was,

™M

(1 - o) ¥a

(1) ee =
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FIGURE 7-1

PQR and S8TU are radial geodesics along which the boundary BE 5 £ B

K
travels. DPQR corresﬁonds to Xo® T ; ST, to Xe €= . An exter-
T 1 a

ior obszerver, maintaining himself at constant ® , iravels along

the curve ABC and, as indicated, sees oanly the arcs PQ of PQR and

2T of STU.
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From (2-20) we have
HMF

L

(7.;,.2) e 3(2%s — s'n 2%a )

Consequently,

LR N

= ™
My =
(7-§j 3(2%Xe - S'n 2%s)
Applying the matching condition (&-1%)
.3
& sin Xa
(7-10 My = MF

3¢ 2%o -s'n 2%0)

E%i is plotted as a funcilon of Ao in figure 7-2. For small

angles,

(7=5} %o 4% 1,

we have for & firet order spproximation to (7-~4),
4 %o Mg

3
3 [-u, - 2%o + (2X0) 1
3!

(7-6) Mw *

which reduces to

{7-T) Mg = My

This seems quite remsonable since, in this approximation, we have
neglected the kinetic and potential energies of particles in the
Friedmann universze as seen by an observer in the Kruskal universe.

If we now pass on to a second order approximation, (7-4) becomes

$
L}[l'x 03 - E_f 1
= *
(7-8) HK — MF
L] \}
S[zx,—z.x., 8 2 (?;*_“) - (’:.13) }
3 s
which reduces +to
¥at
- - 7
(7"9) M"‘ - e
L




FIGURE 7-2

M
Mp

\ \

15 4

50 1

25

N N ' 4 |‘§1—= x.
T
° e Ty K ny SV

The ratic t:ﬁ is plotted against X,

for ephsrical Friedmenn universes
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Expanding the denominator and multiplying, we obtain

3 2 M
= \ - — % ] F
(7-10) Mw [ o ©°
But
(7-11) xXs' = sin X R = t-at

To evaluzte & , we recall (3-11)
(7-12) Jar*_x = %

and since, at the moment of meximum expansion,

4
(71-13) & = °
we have
M

(7"1-'!'}) wt = \ Vwax

Using (7-11) and (7-14) in (7-10), we find that

(7-15)  Mw = ["l. 2 D :) MF

rlﬁ&!

Because of (7-7), &t this level of epproximation, (7-15) becomes

.
MMr

———

"W

(7-16) Mw  F Me -

¢ wa X

The second term on the right corresponds to the potential energy
of the dust particles composing the spherical Friedmaan universe,
as would be calculated by Newtonian mechanics?jso we may conclude
that our relativistic star model reduces to a Newtonisn model if
(7-5) is satisfied.

Now let us turn itc ths case of & hyperbelic Friedmana uni-
verse. In figure 7=3 the radial geodesic follewed by the boundary
B has besn indicated. In this case it is clear-that the exterior

obeserver seas the star expand without limit, eventually eaveloping

the observer himsell.




FIGURE 7-3

PQR3 is the radial gecodesic followed by the boundary BE. ABRC is the
path followed by the extericr observer at some constantr. The observer

is enveloped by the exvanding star atl R.
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Finally, let us exemine equation (&~49) briefly:

“r

[P

g
(7-17) %o = (ot¥-1) v
From {2-21)
4
(7-18) oo =

3 Ks inia

Therefore, using (6-56)

2¥e —2%s)

4sinh? Xo

(7-19)

™o
3 (stnl

The small angle approximation
may be carried out in this ca

imation clearly leads to the

are equal. If we recall that
dr

- v_ = exr
(7-20) wt- ¥ 3=

the second order spproximatio

—

g

3
M s

(7-21)

where the sscond term on ths
tial ensrgy contribution and

kinetie energy contribution.

ME
2%o -~ 2%a)

s consldered for the spherical case

se as well. The first order aperox-

same result, thet the masses We and My

n leads to the conclusion that
L Y
e
r
right is to be interpreted as a poten-
the third term on the right, as a

L M . s
The ratic —= for hyperbolic Friedmann
Mg

universes is plottied ia figure 7-4.

Dawmd L. Rackadeff




(1Y 3

FIGUAE T-4

.S 1.0 (78

The ratio %5’_ is plotted asgeinst X,

for hyperbolic¢ Friedmann universzes
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