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Appendix

Second quantization

For readers who have not met it before, I here set out a brief introduction
to second quantization, the representation of quantum theory in terms of
creation and annihilation operators, which is used to describe many-body
systems of interacting particles. We shall concentrate on fermions, but
mention the application to bosons briefly at the end.

A.1 The idea of second quantization

When we have a large number of interacting identical particles, as in the
electron liquid in a metal, the wavefunction which describes the system
usually becomes extremely complicated, with strong correlations in the
positions of the particles produced by the interaction forces. In such a sit-
uation we cannot say that particular one-particle states are occupied inde-
pendently of what other particles may be doing. However, any many-body
state function, however complex, may always be expressed as an ezpansion
in basis states which do have definite one-particle occupations. The idea
behind the method of second quantization is to work with such basis states,
and to employ operators which act not on the particle coordinates (as in
the familiar Schrodinger representation of quantum mechanics) but on the
occupation numbers of the basis states.

To be specific, we start by choosing some convenient set of one-particle
states. (When dealing with superconductivity we frequently, but not neces-
sarily, choose plane-wave states of definite momentum and spin, ¢,.) The
set is to be arranged in some definite order, ¢1, @2, . ... We then use as our
many-body basis functions the states of definite occupation, ¥(n,ns,.. s
in which the state variables are the occupation numbers 7, ng, ... of the
various one-particle states. For instance, for fermions the basis function
1%(0,1,0,0,1,0,1,0,0,0,...) represents a state containing three identical
fermions in states ¢, ¢s and ¢7. (For fermions we, of course, have an ez-
clusion principle, i.e. the occupation numbers n; may only take the values
0 and 1.)
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At this point we have to consider the requirements of particle exchange
symmetry. For fermions, the state function must change sign when we ¢
change the space and spin coordinates of two identical particles. It follows
that the basis functions of definite one-particle occupation cannot be writ-
ten in Schrédinger representation as simple product functions. We have
to use instead the antisymmetrized products known as Slater &mﬂmgszm:a
such as

¥(0,1,0,0,1,0,1,0,0,0,...)

[ o e
=——|Ps5la) @5 5\C) |-
VN gr(a) 6r() ¢r(c)

The labels in brackets refer to the particles, identified by letter, for mx@BEm
a state such as ¢2(a) means a one-particle state in which particle @ is in
state 2, some state of definite orbit and spin. In this example 1 is a state
containing three identical fermions labelled a, b and c in states 2, 5 an
7. Because the determinant changes sign when any two columns or an
two rows are exchanged, 9 is, as required, antisymmetric under partic
exchange (which is equivalent to exchanging the corresponding colum
of the determinant). It is also correctly normalized (IV is the chwm 0
particles present). Notice that to give ¢ a definite sign the rows must he
written in the proper order.

It is obvious already that we need a formalism which avoids cmEm 25
Slater determinants explicitly; they would be completely chmbwmmmEm for
systems containing 10%® particles. Moreover, the Schrédinger representa-
tion has an unnecessary perversity. The particles are actually indisti
guishable, but in the Schrédinger representation we first label the particles
as though they were distinguishable and then promptly remove the disti
guishability by antisymmetrizing the function. It is this antisymmetriz
tion which introduces the algebraic complexity. The occupation 955
representation, which never labels the particles, is much simpler mzm mo
rational in this respect, as we shall see. -

m\\Aﬁuuj\w . v =

(A1)

A.2 Creation and annihilation operators

‘We now define creation and annihilation operators which act on the Omn
pation numbers of the basis states. We also describe their effects on t
corresponding Slater determinants. ,

If state 4 is occupied, the annihilation operator ¢; empties it
and multiplies by (—1)*®), where 5(i) is the number of filled--
states which come after ¢ in the standard order. (We may.
think of this as converting the N x N Slater determinant to
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an (N — 1) x (N — 1) determinant by first moving the row
corresponding to state ¢ to the bottom, which has the effect

of multiplying by AICmEU and then removing the final row

and the final column, and renormalizing.) If state i is already
empty, ¢; gives zero.

If state i is empty, the creation operator n_ fills it, and mul-
tiplies by (—1)*(¥ where s(4) is the HEB@mH of filled states
which come after ¢ in the standard order. (We may think
of this as converting the N x N Slater determinant to an
(N +1) x (N + 1) determinant by first adding a new state i
row at the bottom and a new column on the right and renor-
malizing and then moving the bottom row up to its correct
position, which has the effect of multiplying by (—1)*®).) If
state ¢ is already filled, nq gives zero.

he reason for defining the operators with the (=1)*® sign factors will

ecome clear in Section A.4. Note carefully the following algebraic prop-
,338.

It is easily seen by inspecting their matrix elements that ¢; and nA
are Hermitian conjugates.

It is also easy to see that when 4  j the operators anticommute

ns.n.\\. = lﬁu.ﬁ&
To — —p.af
cjcj = —cjc] (A.2)
T el el
CiCy = —C;C;.

This happens because the action of the operator corresponding to
the lower row in the determinant changes by %1 the value of s for
the upper row, and the sign of the product therefore depends on
whether this operator acts before or after the operator for the upper
row.

We also find for operators which refer to the same state that

cic; = nw =0

(A.3)
because we cannot annihilate or create the same state twice, and

C,Ci =T,

2
cicl

(A.4)

-7y

where 7i; is the operator for the number of particles in state 7, because
the first multiplies by 1 if i is occupied and 0 if § is empty, and the
second by 0 if occupied and by 1 if empty.



376 Superconductivity Second quantization 377

(iv) Combining the results of (ii) and (iii) we find that
{cicl} = &5

where {a, b} is the symbol for the anticommutator (&b + ba).

be'represented by a matrix having a single element, and has the effect
of replacing ¢5(n) by ¢g(n) and multiplying by feo. (If particle n is not
initially in state 2 or if state 6 is occupied by another particle it gives zero. )
The overall effect of Fgy on (A. 1) is to replace the entire row associated
with state 2 by a corresponding row for state 6, and to multiply by fss.
Evidently Fio will have a non-zero matrix mHmBmmﬁ between basis functions
Eoﬁamm that the only difference between the initial and final states is that
aparticle has moved from state 2 to state 6, otherwise the matrix element
will be zero. The matrix element will have the value

(—1)%®) foo (—1)°@. (A7)

he powers of —1 arise because we have to worry about getting the rows
to the correct sequence. To see how this happens, imagine doing the
alculation in the following way. First move the state-2 row of the initial
ate to the bottom of the determinant, which introduces the factor (=1)s@
here s(2) = 2 is the number of filled rows below the state-2 row, then let
the operator act, which converts the bottom row into a state-6 row and
‘multiplies by .w%“ finally convert the result to standard form by moving
the state-6 row into its correct position, which introduces a further factor
~1)*®) where s(6) = 1 is the number of filled rows below row 6 in the
final state. The matrix element of the whole of £'(1) may be written down
y summing contributions of type (A.7) for all initial and final one-particle
states.

At this wogﬂ we observe that the sign changes included in the definitions
of ¢; and ¢! have been chosen in such a way that the m@mnw of m, expressed
g (A.7) is the same as the effect of the operator cl \30, This allows
Us.to express the general one-particle operator in dmwmom of creation and
amnihilation operators. Summing over the one-particle matrix elements,
¢ may make the identification

A.3 Representation of states in second quantization

We can do all our calculations using nothing but creation and annihilation
operators. We may represent states by letting suitable onmaom.o.wm:
tors act on |0), the empty state or vacuum state. For instance, the: st
Hm?mmmamm by the Slater determinant (A.1) would be written mE\%G

m olov The Fermi gas ground state is

1] h10

k<kp,o

General many-body states of any type may be written using linear comb
nations of such operators. Notice ﬂg.n we may construct states of: Sss&
occupation number such as (chcl + Db_ov which are not eigenstates of ¢
tal particle number and cannot be handled conveniently in mogo&ummw
representation. ;

A.4 Representation of operators in second quantization

The next step is to consider the effects of typical operators Swg %3\
act on the basis functions. In practice what we shall be involved: wit
are one-particle operators, two-particle operators and so on. A obm-wmizo e
operator represents a quantity such as the kinetic energy of all the @mzuo
or the total potential energy of all the particles in an external field, whi
has the form F®) = =3 . f (Tn,0n), a sum over all particles n of m@czémm
contributions each of which involves the space and spin coordinates of on
one particle. A two-particle operator, such as the mutual potential energy
of all the particles, involves a sum over all pairs of particles, and so‘on

What is the effect of a one-particle operator F() on a basis function s

as (A.1)? In considering this it is helpful to remember that the S%ﬁaa
particle operators .Nm themselves have definite one-particle matrix m_mﬂg
fji between the one-particle states ¢; and ¢;. Let us break the operator
F@) down into parts associated with a single one-particle matrix elemen
Consider for instance the operator Fgp = . fe2(n). Here Fea(n) mean

the part of f(n) associated with the single matrix element fso. Hﬁsocﬁ

FO = an%.:ns.

gt

(A.8)

for any one-particle operator £(!). For instance, if we choose to use basis
states of definite momentum the kinetic-energy matrix is diagonal, and the
nozmm@os%bm operator is just

MU oqurqﬁn = M Tik,o €k (A.9)
ko k,o

eme €k is the one-particle kinetic energy A2k2 /2m.. Similar results apply
8 two-particle operators. A general two-particle operator such as the total
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mutual energy of all pairs of particles due to their Coulomb interaction ‘operator becomes

may be identified as

PO \ W () F ()b (r) d3r

N 1
@ = 5 M &&?ESQ

ig,kl

(A.13)

here f acts on the r coordinates of the operator ¥, (7).

It is worth commenting on the form of this result. It looks the same as
he expression for the expectation value of f for a mwsim particle, except
hat the wavefunction ¢ and its complex conjugate 1* have been replaced
v the operators v and ', This is no accident. These localized operators
may be regarded as what we get if we treat the Schrédinger wavefunction
b itself as an operator—hence the name second guantization—chosen in
uch a way as to make the eigenvalues of particle number integers. In the
ame way, the operators ¢ and ¢! which appear in (A.8) and (A.10) may
e regarded as operator forms of the state amplitudes ¢ and ¢* of matrix
mechanics. Just as the use of energy and other operators in Schrodinger’s
quation (first quantization) leads to the correct quantization of energy etc,
80 the representation of v itself by an operator (second quantization) leads
0 the correct quantization of particle number.

where fi; 11 is the two-particle matrix element for the simultaneous sca
tering of a pair of particles in which £ — ¢ and [ — j. The m@o*noﬁ.”.mum =
avoids counting the starting state twice. Note carefully the orders of the
operators in (A.8) and (A.10).

Having written all our states and operators in terms of ¢; and nM, w
a compact formalism for handling all many-body problems. We may forg
about the Slater determinants. All calculations are done simply by us
the operator algebraic relations described in Section A.2. The negat
signs associated with the antisymmetry of fermions appear mcﬁoBmSo
because the operators anticommute.

A.5 Localized operators

In many problems it is appropriate to work with the annihilation mb@, cre-

ation operators for states of definite momentum ¢, and nw_n. It is, howeve

sometimes convenient to work with their Fourier transforms, defined:as

A.6 Application to bosons

lthough the details of the calculation are different for bosons, the results

—ik- . - - . .
bolr) = M . e "’ ‘are very similar, with commutation where we had anticommutation for
7 : 7 Vi fermions. 'We now have no exclusion principle, so there is no limit on
eikr he occupation of any state. The basis states of definite occupation are
Pi(r) = MU nw.n o ymmetrized product functions such as
- 3 :

e @mﬁ&bﬁw,...v ”@AOQMJOQOWHVOMHQOVO,...v
where V is the volume of the system. 1, (r) and 9] (r) are annihilation

and creation operators for é-function one-particle states; they mEEEEdm
and create particles at position r with spin o. It is easy to see from t
definitions that for different values of r or ¢ they anticommute. m.oH. ww
cles of the same spin we find that

ST $2(a)ga(b)és(c)dr(d) (A.14)

permutations

where the sum is taken over all permutations of particles amongst the
occupied states. (In this example we have four identical bosons, two in
tate 2, one in state 5 and one in state 7.) We define ¢; as removing a
particle from state 7 and also multiplying by /7, and we define % as
dding a particle to state ¢ and also multiplying by +/n; + 1. With ﬂgmm
definitions it turns out that expressions for general operators such as (A.8),

(A.10) and (A.13) are all unchanged. The commutation rules are different,

{to(r), 9L (")} = 6(r— 1))

where §(7) is a three-dimensional é-function. ‘
The one- and two-particle operators may be expressed in terms Sq s,amm ‘
localized operators. For instance, the general spin-independent os?w%ﬂo_m :
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however.

We find that the o
(A.4) is replaced by

c;ci =1y

Il

cic; =1, +1

and (A.5) is replaced by

where [¢;,

2

[cs, nu = ;5

| is the commutator Ans.mw, - &DV

perators for different states now commute; .

For further reading

History of superconductivity

Shoenberg D 1952 Superconductivity (Cambridge: Cambridge University Press)
London F 1950 Superfluids vol 1 (London: Wiley). The first clear statement of
“the superfluid idea.

Bogoliubov N' N (ed) 1962 The Theory of Superconductivity (New York: Gordon
~and Breach). Collection of theory papers from the BCS era.

Type II superconductivity

aint-James D, Sarma G and Thomas E J 1969 Type I7 .mgmﬁnoa%n&e&@ (Ox-

ampbell A M and Evetts J E 1972 Critical Currents in Superconductors (Lon-
don: Taylor and Francis)

Rickayzen G 1959 Theory of %:ﬁmﬁncd&mn&e&@ (London: W iley). Thorough basic

de Gennes P G 1966 mﬁﬁmﬂnoaaﬁn&e&@ in Metals and Alloys (New York: Ben-
“Jamin). Develops non-loca] ideas and emphasizes type II behaviour.

Tinkham M 1975 Introduction to Superconductivity (New York: McGraw-Hill).
Includes SQUIDs, fluctuations and pair breaking. Extended new edition pub-
lished in 1995.

Parks R D (ed) 1969 Superconductivity 2 vols (New York: Marce] Dekker). Com-
prehensive series of authoritative articles.

Field theoretic methods
Abrikosov A A, Gor’kov L

P and Dzyaloshinskii I E 1963 Methods of Quantum
! Physics (London: Pergamon)
of %:mmﬂnc:&:e&e&@ (New York: Benjamin)

ysics of High-Te Supercondurtore (Qom ™ieee x





