A. Review of relevant concepts from Quantum Mechanics

Review of Basic Quantum (wave) Mechanics for *single* particles:

Time-dependent Schrodinger equation:
$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V(\vec{r})\psi$$

Probability amplitude for finding the particle:
$$P(\vec{r},t) := \psi^*(\vec{r},t)\psi(\vec{r},t)$$

Normalization condition on the wavefunction:
$$\int P(\vec{r},t)dV = \int \psi^*(\vec{r},t)\psi(\vec{r},t)dV = 1$$
 for all time t.

Probability current:
$$\vec{J}_{prob} = \frac{\hbar}{i2m} (\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*) = Re[\psi^* \frac{\hbar}{im} \vec{\nabla} \psi]$$
. Note that \vec{J}_{prob} has dimensions of inverse time.

Continuity equation for probability density:
$$\frac{\partial P}{\partial t} = -\vec{\nabla} \cdot \vec{J}_{prob}$$

Charged particle under the influence of electric and magnetic fields, with associated scalar and vector potentials:
$$\vec{B} = \vec{\nabla} \times \vec{A}$$
 and $\vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$. The canonical momentum is the sum of the kinematic momentum and electromagnetic momentum: $m\vec{v} + q\vec{A}$.

Schrodinger equation including
$$\phi$$
 and \vec{A} : $i\hbar \frac{\partial \psi}{\partial t} = \frac{1}{2m} (\frac{\hbar}{i} \vec{\nabla} - q \vec{A})^2 \psi + q \phi \psi$

Probability current including electromagnetic momentum
$$q\vec{A}$$
: $\vec{J}_{prob} = Re[\psi^*(\frac{\hbar}{im}\vec{\nabla} - \frac{q}{m}\vec{A})\psi]$.