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Mixed-symmetry superconductivity in two-dimensional Fermi liquids
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We consider a two-dimension&D) isotropic Fermi liquid with attraction in bote andd channels and
examine the possibility of a superconducting state with mxeddd symmetry of the gap function. We show
that both in the weak-coupling limit and at strong coupling, a migsedd symmetry state is realized in a
certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second
order. We also show that there is no stable migedd symmetry state at any coupling.

I. INTRODUCTION to indicate thats-d mixing is possible in some systems, and
0{‘he theoretical situation where the relative phase is not well

The question of the order parameter symmetry is one . . . . X
the central issues of high-temperature superconductivitﬂeterm'ned’ additional understanding of the physics of this

There is a general consensus that the superconducting gapPgase is needed. In this paper, we address the issue of
highly anisotropic, but whether the gap has a particular symwhether one can obtain tree-d mixed state in calculations
metry under rotations is still a matter of debate. A number ofon a simple but fairly general model. The answer we obtain
experiments on YBZuOq, , (YBCO) are roughly consis- is negative—we found that for any coupling, the only pos-
tent with thed-wave symmetry for which the most natural sible mixed symmetry in this model &+ id.

source is the exchange of magnetic fluctuatforisyt We consider a model of an isotropic two-dimensional
some experiments, e.g., photoemission studies Ogermiliquid with attractive interaction in bothandd chan-
Bi,Sr,CaCyOg.« (BSCCO-2212"" as well asc-axis JO- npels. We assume that both interactions are frequency-
sephson tunneling experiments on YBC@re inconsistent  jndependent in a frequency range bounded by the cutoff fre-
with Fhe_ pured wave but more conS|stent_W|th m.d state. quencyw,, and are zero fofw|>w, . Obviously, when only

In principle, the presence of orthorhombic distortion in, €.9..,546 of the two interaction channels is present, the ground
BSCCO-2212Ref. 6 in itself guarantees that an otherwise state is described by the corresponding pure symmetry gap

d-wave superconducting gap will have an admixture of th . , . !
s-wave’ However, the superconducting state may be a mixejunctlon. When both interaction channels are present, their

ture ofs andd components even in the absence of an ortho_competition will lead to either one of the two pure symmetry

rhombic distortion superconducting states, or a mixed state, where the gap func-

A superconducting state with a mixeg-d symmetry of 0N contains both the and thed harmonics. _
the gap was first discussed in Ref. 8 and #heid state in In the next section we will consider th.e Weak—co.uplmg
Ref. 9. The mixed symmetry state at intermediate doping@Se€; Where one can use the BCS formalism. We will show
levels was also found in variational Monte Carlo studies ofthat the transition betweesiandd symmetries occurs via an
thet-J model° An alternative possibility of symmetry mix- intermediate phase with mixes+id symmetry. The two
ing caused by interplane coupling was proposed in Ref. 11phase transitions between the pure and the mixed states are
More exotic mixed symmetry states have also beersecond order. In Sec. Ill we consider the case of arbitrary
suggested>!® coupling in the framework of the Eliashberg theory. We will

Very recent work has showhthat the extent ob-wave  show that there always exists a range of relative strengths of
admixture is a strong function df, the second-neighbor thes andd interactions where as+id solution exists. The
hopping, which varies a good deal from one highmaterial  analysis of thes+d mixed state is more complicated. How-
to another. This strongly suggests that the questios-of ever, we can show that at least in both the weak and the
mixing should be looked at as a function of hole doping, andstrong coupling limits thes+d mixed state does not occur.
that this must be done in each high-material separately.  Qur conclusions are summarized in Sec. IV. As an aside, in

The variational Monte Carlo calculations indicate that atthe Appendix we also present few simple results for the ther-
the doping levels, which favor mixed symmetry states, thQnodynamiCS of ad-wave superconductor in the weak-
ground-state energy is roughly independent of the relativeoupling limit, which, to the best of our knowledge, have not
phased of s- andd-wave components. This relative phase ispeen published anywhere else. The main feature is that the
of great importance, since onf=0 and states can have ratio of the superconducting gap to the transition tempera-

gap nodes. The experiments on combinations of Josephsaiire, 2A/T,, for thed wave is 4.28, larger than 3.53 for the
junctions on YBCO(Ref. 15 appear to rule out a relative s wave.

phase of#/2 if the s-wave amplitude is more than about
10% of thed wave. Recent photoemission work as a function

of hole doping}*® indicates thaty=0 and that the relative Il WEAK COUPLING
amplitude ofs wave andd wave depends on temperature and
the hole doping level. In this section we will consider the case when the cou-

In view of both the experimental situation, which appearspling is weak in both interaction channels. In this case the
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BCS theory is valid, and the gap equation assumes the fol- Vo( Ao+ COPA COS2
lowing form?’ A== s(As 4CoS2¢p")

;7 2\/% +|AK)|?
AR ==2 Vg e 1)
k/

2Ei V4C0S20' (A .+ COSHA 4COS20'
Agcog— -3 Ve 2¢' (A dC0S2p")

where K 2\ e+ |AK)[? |
\/ ﬁ2k2 2
o (%‘

+|A(|Z)|2: /SE+|A(|Z)|2, ) cosz¢sin0=—z sinfcos2p’ (V¢+V4c0s2hcos2p’)
= > LIACKT) |2
and ¢ 2\eq+IAK)]

Y

Viii =Vs(K,K') +V4(k,k")cod 2(¢p— )] (3 whereV=V¢(ke,kr) andVy=Vq4(ke,kg). It is straightfor-
ward to see that if botthA; and A are finite, the se{5-7)

can be simultaneously satisfied in only two cases,0 or

0= /2, leading tos+d or s+id, respectively. Thus the
weak-coupling theory gives the same restricted set of possi-
bilities for the internal phase angle that Ginzburg-Landau
theory offerst® Below we consider these two cases sepa-

A(p)=As+e"%A cos2p, (4) rately.
Separating the real and imaginary parts of this equation, and

(5)
A(K)

(6)

is the interaction, which contains bothand d harmonics.
The angle¢ is defined in our two-dimensional model as
¢$=tan‘1(ky/kx). Consider now a trial mixed state with ar-
bitrary phase difference between thavave and thal-wave
components of the order parameter:

also thes andd components, we obtain a set of three inde- A.std state
pendent equations In this casef=0, and Eqgs(5) and (6) become
2rd¢p’ [oc Ag+Aycos2p’
Ag=— f ° f deN(0)V, —— 2 > , ®)
0 27 )-u, 4+ A2+ 2A A 4cos2p+ AdcoS2¢

(€)

f2¢d cos2¢p' (Ag+ Aycos2p’)
d= — 5

d"f“’c
deN(0)V, .
0 27 ), (&) 44+ A7+ 2A Agcos2p+ A2cog2¢

Performing the integration over the frequency and doingy, even further, we find three solutions: at=0 (pure d
standard manipulations, we obtain wave, = (pures wave, and at some finite,,, which
corresponds to a mixed state. As increases furtherg,,

1— %) a=gf(a), (100  decreases and becomes zero at
where gs=—VN(0)/4, g4= —V4N(0)/4, a=A, /A4, and 2__ 9 (13)
the functionf(«) is given by S 2—g42°
fla)= fW%(ZaCOS(—l)(COSH—a)ln(a+COS()2. For largergg, there exists only one solutiom =0, which
02m corresponds to a purewave state.
(11 We see therefore that thd-wave solution exists at

(2) i ~ i i (1)
The graphical solution of Eq10) is shown in Fig. 1. It is 0<gs<gs”’, while thes-wave solution exists afs>gs~ .

int i (2) (1) i i
easy to see that in the limit af—c, f(a)~a, while in the 1€ key point |s(t1r)1ags >%25) , such that there is an inter-
limit of @— 0, f(&)~ — a/2. If we start out withgs=0, then, ~ Mediate regiongs~’<gs<gs™, where both pure solutions

naturally, the only solution isx=0, i.e., pured wave. As  €Xist together with the+d solution (see Fig. 2 To verify
gs increases, the slope of the straight line on Fig. 1 deWhich solutions are stable, we computed the second deriva-

creases, and at tives of the energy and found that the two pure solutions are
stable in the intermediate region, while the d state actu-
4 ally corresponds to a maximum rather than a minimum of
(12 energy. Clearly then, the+d state is unstable; if it was the
only mixed state allowed, then the system would simply un-
the lines first cross ak=c. However, the pura-wave so- dergo a first-order transition between the two pure states with
lution does not become unstable at this point. If we increasa region where hysteresis is possible betwggh andg!?.

(1) — i
S 2+gd
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FIG. 1. Graphical solution of Eq10) is given by the intersec-
tion of the curvef(a) and the straight line.
B. s+id state

In the case ofd==/2, we follow the same procedure.
Now the coupled gap equations have the following form:

Fwdgb Ay4co$2¢’

\/e +A2+A%coS2¢ (19

J‘ded)'fwc q AS (15)
= - € .
0o 2m J o, gs\/ez+A§+A§co§2¢

Integrating over frequency and doing standard manipula®

tions, we obtain that the mixed state exists if

29s
1-— =0s| 5

1
9 +a —ayl+a? (16

d -wave region

s+d wave

2(4-99 /94

s+d v
wave S -wave region

d - wave region of s - wave
s+id
2/(4+g ) 1/2 9494

FIG. 3. The phase diagram of the superconductor at zero tem-
perature depending on the ratio of coupling strengths in the two
channels.

As before,a=Ag/Ay.

As we start out withg,=0, Eq.(16) has no solution, and
the gap has purd symmetry @=0). However, contrary to
the previous case, here a solution(6) first appears at

(li): gd
S 2+g4/2’

(17)

for the samea=0. As we increases from g(l'), a and,
therefore,A¢ increases continuously, satisfying

_ 942+295/94—

V294(1-294/9q)

(18

and becomes infinite &?")=g4/2. Clearly, in this situation,
we have a second-order phase transition from plrte a
mixeds+id symmetry state aj;=g*", and a second-order
transition from a mixed state to pures state at
9s=9%">g{  In other words, the two pure states, which
are stable with respect ®+ d mixture, are in fact unstable
(for corresponding;s) with respect tos+id mixture, and in
betweeng{*) and g®" the s+id state is the equilibrium
state of a systensee Fig. 3.

Ill. STRONG COUPLING

In order to be certain that our results are not an artifact of
the weak-coupling approximation, we perform the calcula-
tions in the strong-coupling regime. We follow the Eliash-
berg formalism®!° at zero temperature. We assume that the
frequency cutoffw.<ep, so that vertex corrections can be
neglected according to Migdal theoréfh.

In the Eliashberg approach, one preserves the frequency
dependence of the gap and substitutes the full quasiparticle
Green's function in the gap equation. In explicit form, the
equations are

1/(2+gd) gs/gd .
Ak, w)
FIG. 2. The location of the phase boundaries for the wiad .
state. The critical point of the transition fros+d to s occurs A(k_7,w’)
inside thed phase and vice versa, meaning that there is no region of = — 27— 2 Qz(k’ Nt &Z(I? 4 EZ(IZ)’) )
() , W

s+d mixed phase.
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o+ wgl2 2w(
e oo [T [0
do’ QK 0" )
—o— | — Ve —— Sy . (9s+94Cos2p) (o', ¢)
@ 277% kk Qz(kl,w’)‘i‘Az(k/,w/)‘l‘fz(k,) X\/|Q(w’,¢)|2+|A((u’,¢)|2 ' (20)

19

(19 We now again consider the two mixed states separately.
where 5(5) is the renormalized single-particle energy,
£(q)=ve(q—pg),A(q, ) is the anomalous part of the self- A. stid state
energy, and)(ﬁ,w) is the antisymmetric ino part of the Consider first a mixed+id state. For this symmetry, the
normal self-energy. Aso.<er, the integration ove'*k’l is angular decomposition of the self-energy functions yields
confined to a region near the Fermi surface and can be sub- - - ~
stituted by the integration oveg, as in BCS theory. This Alw, ) =Ay(w) +iAg(w)cog24), (21
integration is straightforward and yields

Qw,0)=04(0) +iQy(w)cog2¢). (22
Aw)= f‘”“’olz ,f2wd_¢ (g5t 94c0s20)A(w’, §) Accordingly, Egs.(20) can be broken down into four equa-
omog2  Jo 27 \[|Q(e', )2+ |A(w’,¢)[>  tions
|
A (w): w+w0/2d IJZﬂ'd_d) gdﬁd(w’)COSZZQS (23)
’ ooz Jo 27 J02(0))+ 0%(w') + Aw')+ A2(w')C0224
- o+ wp/2 27Td¢ gsls(w’)

Afw)= do' | =— , 24

(@) Lwo/z © J'o 27 \JOX ')+ Q3(0')+A2(0')+A2( o' )co$24 2
w+wgl2 27Td¢ ngd(w,)CO§2¢

Qy(w)= ) s , 2

al®) 0—wgl2 Jo 27 O3 (') +0%(0')+A2(0')+A2(0')cog2¢ @9
o+ wgl2 2rdg 0sQ(w")

Q)= = . 26

(@) “’+Lw0/z fo 27 J02(0')+ Q%)+ A2(0') + Ad(w' )cOS26 (29

Equation(25) is homogeneous if},. For weak coupling its only solution wd34=0. In principle, at strong coupling, there
is a chance that above some threshold there exists a solution with a ndhgerd/e will not consider this rather exotic
possibility and will instead assume that the stable solution of(£8). corresponds td)4=0 for all couplings.

We now follow the same approach as at weak coupling and look for the transition points betwesrapdnmixeds+id,
and pured and mixeds+id states. In the former case, we linearize the above set of equations agsrtiand obtain

o) w0+ wgl2 'JZde) JgAg(w')co2¢
B vz Jo 27 020+ Ko(w')’
- w+wgl2 2md & !
As(w):f ’ dw’J' L CR 27
w-og2z  Jo 27 \JO2(w')+A%(w')

Equations(27) are obviously satisfied wheg{?) =g,/2, the same as for weak coupling.

Now consider the transition from thlewave state into the mixed state. Linearizing E@8)—(26) with respect tcﬁs, we
get

Ag(w)=

w+w0/2d IJZWd¢ gdﬁd(w,) +fw+w0/2 /fZﬂ'd(]s gdﬂd(wf)coS%
0 27 2\0%(w')+A2(w')co2¢ 0 27 2\0%w')+A2(w')cod2¢’

- o+ w/2 27Td¢ gsls(w’)
)= do’ [ 52 . 29
(@) Lwo/z © fo 27 0% (') +A%(w')co224 9

(28)

w—wpl2 w—wpl2
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We first observe that if the second term in Eg8) were The above consideration shows that for arbitrary interac-
absent, thed-wave solution would become unstable attion strength there exists a rangeqf/gy, where neither of
M=gy2=9) . We now show that this second term the pure states is stable. We further expanded near each of
yields a negative correction to the first term, independent ofhe transition points up to cubic terms in ety or A4 and
whatAy(w’) andQ4(w’) are. Indeed, let us perform angular indeed found a nonzero solution for this intermediate range

integration first. For the first term iri28), the integrand
[apart fromgy Ag(w')] is positive, and the integration yields

of couplings, which implies that in the intermediate region
the gap has as+id symmetry. It turns out therefore that the

a positive result. For the second term, we have to evaluatePNase diagram at weak and strong couplings is essentially the

[ cospdo (30
0 va+ bco&;&’

wherea>b>0. Doing simple manipulations, we obtain

| J'w/2 Cosp 3 Cosp
o Ja+bcosp +a—bcosp/

Since cog is positive when &< ¢<r/2, thenl is negative.
This simple argument shows that the second ternt2®)
effectively reduces the value gf; to g§”< Jq.- Clearly then,
the critical valueg{*"=g&"/2 for the transition between the
pured state and the+id mixed state will besmallerthan
gal2=g®".

de 31

same. It is nevertheless interesting that the strong-coupling
corrections tend make the mixing of tilsewave into a pre-
dominantlyd wave more favorable.

B. s+d state

Now we study whether it is possible to obtain thé d
mixed symmetry state in equilibrium. This case is signifi-
cantly more complicated because, unlike sieid case, the
square of the gap function now contains a term that is linear
in boths andd components.

However, we will show that at least in the limit of very
strong coupling there is no region sf-d symmetry. Indeed,
consider the transition, aj= g(sl), between the purs and
the mixeds+d states. Eliashberg equations linearized in
Aq andQgq read

- o+ wp/2 27Td¢ g A ((,)/)
O T 32
w2 Jo 27 \J02(w')+ A (o)
w+ wgl2 2mwd QO !
Qs(w)=w+f ° w'f —¢ ng el z , (33
0 w2 0 27 JOXw')+A(w')
- wtog2  r2mdg  gelg(w’)coS24 gadg(@)[Ag(0)Ag(0) +Q4(0) Q@) ]cos2¢
Ad(w)=f w j o 2, 1 2, N 20 1y 20,0 1Y1312 » (34
0 wgl2 0 27 \JO2(w')+A(w')cof24 2[0%w')+A%(w')]
wrog2 (2ndg gaQa(w") gadg(0)[Ag(0)Ag(w") + Qy(0') Q@) Ico$2¢
Qg(w)= w 27 02 2 - 2, o X2(. 1\1312 - (39
o= w2 0 &m \/Qs(w)+Ad(w)cos’-2qb 2[4 w")+AYw")]
|
We now show that fogs>1 andw<wg, Afw)> Qo). 9y (@02 N2w2dw
Indeed, suppose that this is true. Then it is easy to see that in 1= ?J I NTL (38
the region of frequencies we are interestedAg(w) is fre- ~oo2(Ast+ M o)
guency independent and equaldggvy, while Q4(w) is lin- Using (37) we finally obtain that
ear inw. Letting Q(w)=\w, we can rewrite the inequality
asgs=g">\. Then, Eq.(33) becomes gq| ¥
$=l5) <9 (39

g(sl))\ ot+twg2 ' dw’

AN=1+ ——, 36
w »—wgl2 \/7\2a)'2+A§ ( )

Solving (36), we obtain forg{Ys>1
N=2(g")P<gl", (37)

thus justifying the assumption thét(w)>ﬂs(w). Further-
more, in this limit, Eq.(34) reduces to

We see, therefore, that in the strong-coupling limit the hypo-
thetical transition between a mixed-d and a pures state
occurs ags=g{"’<gy. However, for this ratio of couplings,
both the pures wave and the mixed state clearly must be
unstable with respect to the putkwave state. A similar
analysis shows that the transition between the pluaed the
mixed state occurs ajs= gg2)~gd. As a result, we again
haveg{®>g", which, just as in the weak-coupling case,
implies that there is no region of mixexd symmetry.
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IV. SUMMARY APPENDIX

We have studied in this paper a two-dimensional isotropic In this appendix, we present weak-coupling calculations
Fermi liquid with attractive interaction in bothandd chan-  for the thermodynamics of a pum-wave superconductor.
nels. We considered the weak-coupling limit and also applied he gap equation at zero temperature is
the Eliashberg formalism at strong coupling. 2

The phase diagram of the superconductor turns out to be 1:gdf“’°/2 def%d—d) cos2¢ . (AL)
the same at weak and strong coupling. It displays a region —wg2 Jo 27 [+ A§CO§2¢>

with a mixed s+id symmetry gap when the coupling fter simole manipulations we arrive at
strengths in the two channels are of the same order of maéb—‘ P P

nitude. The phase transitions between the mixed state and the 2w, 1
pures andd states are second order. Aj=——=exp — —]|. (A2)
We have shown that in the weak- and strong-coupling Ve Yd

limits a mixeds+d state does not occur. Intuitively, this can At the same time, the transition temperature is giverfjby
be interpreted as the propensity of the system to choose the

state in which the amplitude of the gap function has the T =ﬂexp<—i (A3)
largest value. This is also in agreement with the Ginsburg- ¢ m 94/’
Landau consideratior_i‘é',le_ which suggests that in the ab- 16 |n—C~0.577 is Euler's constant. Then
sence of orthorhombic distortion thetid state has lower
energy than thes+d state. 2Ay 4w
Indeed, the model we considered is oversimplified: the T_c:\/—Ty~4'28' (A4)

two-dimensional isotropic Fermi liquid captures some of fea-
tures of the highF. materials; however, the isotropic system Note, this ratio for thes wave is 3.53. Finally, starting with
is never close to a magnetic or a metal-insulator transitionthe gap equation at finite temperature

Our analysis of thes+d versuss+id question, therefore,

does not include such effects. In this sense, what we have 1-g f“’OIZ dEJZ’Td_‘ﬁ cos2¢ _
shown here is that if the+d state is realized in real mate- d ~ w2 0 27 2+ Ad?

rials, some nontrivial physical effect of the proximity to . .
Py P y and performing standard expansions di<T, and

these phase transitions is likely to be the cause. ' ; :
P y T.—T<T. " we find the following expressions for the tem-
perature dependence of the superconducting gap:

1, (A5)
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