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Consider a spatially extended field which evolves in time according to a PDE. The solutions contain particle-like defects 
whose motions are parts of the full dynamics. We inquire into the formulation of an asymptotic "particle + field" defect 
dynamics which derives from the full PDE. We carry out this program for two complex scalar field equations in two space 
dimensions, the nonlinear Schr6dinger equation and the nonlinear heat equation. The topological defects are zeros of the 
complex scalar field with nonzero integer winding numbers, called vortices. Vortices evolving under the nonlinear 
Schr6dinger equation behave like point vortices in ideal fluid. Pairs of vortices evolving under the nonlinear heat equation 
with like (opposite) winding numbers undergo a repulsive (attractive) interaction. 

1. Introduction 

Let O(x, t) be a complex scalar field defined for x ~ R 2 and some interval of t ime t. Its t ime evolution 
is governed by a P D E  in variables x and t. Assume that at t = 0, ~b has isolated zeros with nonzero 
integer winding numbers.  As O(x, t) changes continuously in time, these zeros persist as long as they 
remain isolated. They retain their original winding numbers  but may migrate in space. We call these 

zeros of ~b vortices. 

A solution of the P D E  naturally encodes the trajectories of  the vortices and in this sense the vortices 
seem secondary in importance - "merely  local structures in an overall flow". But dear ly  they are 
dominant  features in the geometry and topology of the field and it is natural  to expect situations in which 
they "domina te"  the dynamics as well. We formulate a basic scenario for "vor tex dominated"  evolutions 
of the field ~b. The P D E  contains fundamental  length and time scales. Relative to these, the vortices are 
far apart  and move slowly. The field far from the vortices varies slowly in space and time. In this slowly 
varying limit we derive a reduced P D E  from the full PDE.  The slowly varying field description breaks 
down within a fundamental  length of a vortex and we require local descriptions of  the field about the 
vortices. Asymptotic matching leads to effective boundary conditions on the slowly varying field at a 
vortex. The reduced P D E  governing the slowly varying field subject to the effective boundary conditions 
at vortices constitutes an "asymptotic vortex dynamics". Such formulations are reminiscent of "part icle 
+ field" theories well known in physics. In the simplest case, the asymptotic vortex dynamics reduces to a 
set of  ordinary differential equations for the positions of  the vortices. 

We actually carry out this program for two closely related field equations, both well known in 
mathematical  physics. They are 

A~b + (1 - I~blE)~b-- - i~b t ( N L S E )  (1.1) 

A~, + (1 - 1~12)~, = ~,, (NLHE). ( 1 . 2 )  
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The equations (1.1), (1.2) are known as the nonlinear Schr6dinger equation (NLSE) and the nonlinear 
heat equation (NLHE),  respectively. 

1.1. Vortex states 

In the t ime-independent case, both (1.1) and (1.2) reduce to 

A@ + (1 - 1@12)@ = 0. (1.3) 

The simplest solutions of (1.3) are the uniform states 

= e i°°, (1.4) 

where 0 0 is an arbitrary constant. These are stable as solutions of the NLSE or NLHE.  In addition there 
are vortex solutions with a single winding number n, which take the form 

~b(x) = U(r)exp[i(n0 + 00) ] (1.5) 

where (r, 0) are polar coordinates of R 2 and 00 is an arbitrary constant. The modulus U(r) satisfies the 
boundary value problem 

1 n 2 
U,r + rUr - -~TU + (1 - U2)U=O, (1.6) 

in r > 0, and 

U(O) = O, U(oo) = 1. (1.7) 

The continuity of ~b at r = 0 forces U(0) = 0, while U(00) = 1 is consistent with a locally uniform state as 
r ~ oo. Asymptotic behaviors of U(r) as r ---> 0 or r --* oo may be established directly from (1.6), (1.7): 

U(r) ~arl"l+ d~(r Inl+2) as r -~O,  

~ l - n Z / 2 r  2 + f f ( 1 / r  4) a s r - * o o .  (1.8) 

Fig. 1 depicts numerical solutions of U(r) for n = 1 ~ 4. From these, we may construct corresponding 
visualizations of $(x) .  These are presented in fig. 2. The neighborhood of r = 0 where U is significantly 
less than one is called the vortex core. Its radius, the core radius, defines a characteristic length. We see 
that the core radius increases with n. 

Vortices with winding numbers n = + 1 or - 1  are topologically stable, while vortices whose winding 
numbers have absolute value 2 or greater are topologically unstable against fission into In l vortices, each 
of winding number sgn n. There  is strong numerical evidence that the topological stability of vortices 
indicates their dynamical stability as solutions of the NLHE.  In numerical simulations of interactions 
between In[ = 1 vortices governed by the N L H E  [1], the ~ field in a given vortex core retains its 
characteristic "vortex structure" as long as the vortex remains separated from its neighbors by a distance 
greater than a core radius. This is strong evidence for the dynamical stability of In l --1 vortices. The 
numerical simulations of Carlson and Miller also demonstrate the dynamical instability of [nl > 2 
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Fig. 1 

vortices against fission into In l vortices, each of winding number  sgn n. Fig. 3a is a movie of  an n = 2 
vortex disintegrating into two n = 1 vortices. In fig. 3b, we observe the initial disintegration of an n = 3 
vortex into four n = + 1 vortices and a single n = - 1 vortex. The n = - 1 vortex eventually merges with 
one of the n = + 1 vortices and both are annihilated. So finally, only three n = + 1 vortices remain. 

The dynamical stability of vortices as solutions of  the NLSE remains an open problem.  The 
nondissipative character  of  the NLSE greatly complicates the stability theory and direct numerical 
simulation. In this work, we proceed on the assumption that  In[ = 1 vortices are dynamically stable, so 
that the problem of their interactions makes sense. 

1.2. Asymptotic vortex dynamics 

We describe the limit process which underlies the "asymptotic vortex dynamics" of  the NLSE or 
NLHE.  The intervortex distances are ~ ( 1 / ~ ) ,  0 < E << 1. The NLSE and N L H E  are both first order  in 
t ime and second order  in space. Hence  the natural  t ime scale corresponding to the length scale 1 / e  is 
1 /~  2. The natural  representat ion of  a vortex trajectory is 

X = Q ( T ,  ¢) ,  

where X and T are scaled space and time variables 

(1.9) 

X =  EX, T - -  E2t. (1.10) 

The velocity associated with the trajectory (1.9) is EQ, so the vortex velocities are ~ (e ) .  
We construct complimentary asymptotic expansions of  ~b(x, t, ~). The  core expansions are valid in 

neighborhoods of radii ~ ( 1 )  about the zeros of ~/,. The core expansion about x = Q(T, ~)/~ takes the 
form 

¢ = $ ( r , r , E ) ,  r = - x - Q ( r , E ) / e .  (1.11) 
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Fig. 2. In these visualizations, the dots mark a lattice of positions in the x, y plane. The ruler at the lower right 
graph indicates the spatial scale. The line segment emanating from each lattice position (x, y) represents the vector 
(x, y). The value of the phase constant 00 is posted only if it is nonzero. 

! 

corner of each 
(Re O,Im 0)  at 

The farfield expansion is valid at distances @ ( l / e )  from a vortex. It takes the form 

= (1.12) 

We describe certain subtle points about the e-dependences of these expansions. They are constructed 
assuming that the vortex trajectories Q(T, e) are given. Hence,  they have implicit e-dependences due to 
their dependences upon the Q(T, e). Vortex evolutions are inherently 2D phenomena. One essential 2D 
effect is the appearance of log e as a parameter in the expansions. A logarithmic dependence upon e is 
"slower" than any positive power a of e in that e ~' log e---> 0 as e ~ 0. We treat unity and log e as 
formally equal orders of magnitude. In summary, we construct the core and far field expansions as formal 
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Fig. 2. Continued. 

4 

power series in e, where each term in these expansions may exhibit implicit E-dependence through 
dependence upon the Q(T, e), and "slow" E-dependence through dependence upon log e. 

Since the vortices are separated by • (1 /e )  distances and move with ~ ( e )  velocities, we anticipate that 
the leading order core expansion ~b ° is a vortex state 

~b ° = U( r) exp{i[nO + Oo( T, e) ]} .  (1.13) 

Here, r, 0 are polar coordinates of x. The winding number n is assumed to be + 1 or - 1 for topological 
and dynamical stability, and Oo(T, e) is a slowly varying phase shift. The leading order far field expansion 
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q,0 has modulus one. Hence there is a slowly varying phase O°(X, T, E) so that 

I/,0 = exp[iO0( X, T, , ) ] .  (1.14) 

The program of the asymptotic analysis is to derive a "free boundary problem" which governs the 
evolution of the slowly varying phase O°(X, T, ~) and the vortex positions Q(T, E) in the limit e ~ 0. This 
consists of a reduced PDE for the phase subject to effective boundary conditions at vortices. The 
effective boundary conditions emerge as requirements for asymptotic matching of the core and far field 
expansions. Fig. 4 summarizes in visual form the limit process associated with the asymptotic vortex 
dynamics. 

1.3. Vortex dynamics of the NLSE 

It follows from the NLSE that the far field phase O ° satisfies Laplace's equation, 

AO ° = O. (1.15) 
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F i g .  3. C o n t i n u e d .  

We describe effective boundary conditions upon O ° at vortex positions determined from asymptotic 
matching. 

O) Topological boundary conditions 
At each vortex position X = Q, (9 0 satisfies the topological boundary condition 

19 0 ~ n O ( R )  + O o ( 1 . 1 6 )  
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"core" ~ ~ U(r)e i(n0 + O0(T,c)) 

o(1) ~ o(1/e) 

°(l/E) ~ X ~ l '1 / / ;  

"far field" q~ ~ e ~O°(x'T~e) 
Fig. 4 

as R -- X - Q --, 0. Here,  O(R) denotes the azimuthal angle of the two-vector R. 00 = 00(T, e) is the same 
slowly varying phase shift which appears in the leading order core expansion (1.13). (1.16) forces the 
phase field 190 to be multivalued, but ~0  = eiO ° remains single valued. Let C be any closed loop which 
contains only one vortex at X = Q in its interior. The continuity of e i~9° in a punctured neighborhood of 
X = Q imposes upon 190 the topological constraint that (1/2av)fc V19 °- d x  be an integer. From (1.16) it 
follows that the integer is the winding number n of the vortex at X = Q. 

Laplace's equation (1.15) subject to the topological boundary conditions at vortices and a suitable 
boundary condition as Ixl ~ ~ is sufficient to determine 190 if the vortex positions and winding numbers 
are given. For  instance, suppose there are N vortices at positions X =  Qi, i - - 1  ~ N ,  with winding 
numbers n i. We take the boundary condition at oo to be IV19°1 ~ 0 as Ixl ~ ~. It follows that the 
solution for 190 is 

N 
19o = ~_~ niO( X _  Qi) "+ C ( Z ) ,  (1.17) 

i= l  

where C(T) is a function of the slow time T. 

(ii) Dynamical boundary condition 
The dynamical boundary condition at X = Q determines the vortex velocity Q induced by the local 

structure of the phase field O ° surrounding X = Q. In a region D c R E containing only one vortex at 
X -- Q, the solution of Laplace's equation (1.15) subject to the topological boundary condition (1.16) takes 
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the form 

O°= nO( R) + H( X,T,e),  (1.18) 

where H is harmonic in D. From (1.18) we deduce that 

O°~ nO( R) + Oo + K. R + ~ ( R  2) (1.19) 

as R ~ 0. Here, 00 = O0(T, E) = H(Q, T, E), and K = K(T, e) = VH(Q, T, E). We think of K as the "locally 
uniform component" of the phase gradient at X = Q. It determines the vortex velocity: The dynamical 
boundary condition at O ° at X = Q is 

Q =  - 2 K + ~ ( 1 ) .  (1.20) 

The Laplace equation (1.15) subject to topological and dynamic boundary conditions (1.16), (1.20) 
constitute the asymptotic vortex dynamics of the NLSE. Given a prescribed boundary condition on O ° as 
IX[ ~ oo and initial vortex positions, we can evolve the vortex positions and phase field O ° by means of 
eqs. (1.15), (1.16), (1.20). For a system of N vortices in unbounded R 2 with IWg°l ~ 0 as IXl --, oo, this 
formulation quickly reduces to a system of ODEs for the vortex positions. Let X = Qi, i -- 1 ~ N denote 
the vortex positions. O ° is given by (1.17). Taking Q = Qi in (1.18), we find that (1.17) is consistent with 
(1.18) if 

H =  E n i O ( X - Q j ) .  (1.21) 
j~i  

We compute the locally uniform component of phase gradient at X = Qi to be 

K = VH(Qi, T, e) = E nj J(Qi - Qj) 
j~i  [--~i----Q-~' 

where 

is the matrix representing rotation by "rr/2 counterclockwise radians. The dynamical boundary condition 
(1.20) now implies 

,, v" J ( Q i -  Qj)  
Oi = L ~ n j  ~ / / : - Q 7  +,-(1) .  (1.22) 

1.4. Fluid dynamics analogy 

Eqs. (1.19) are equivalent to the well-known Kirchoff equations describing the motion of point vortices 
in ideal incompressible fluid provided that we identify F~ = 4"rrn i as the circulation of the vortex at 
X = Qi. This description of nonlinear Schr6dinger vortex dynamics is quite natural when we recall a 
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well-known analogy between the NLSE and the equations of motion for potential flow of ideal fluid [2]. 
In fact, the association between Kirchoff's equations and the vortex dynamics of the NLSE was first 
conjectured by means of the fluid dynamics analogy [3]. In the fluid dynamics analogy, 2 arg ~b plays the 
role of the velocity potential. The •---> 0 far field limit process of the asymptotic vortex dynamics is 
analogous to an incompressible limit of the fluid dynamics. In the incompressible limit the velocity 
potential is harmonic. This is upheld in our analogy: In the far field, 2 arg ~0 ~ 200 as • -~ 0, where O ° is 
harmonic. The velocity potential far outside a fluid vortex of circulation F centered at the origin is 
(F/2"rr)O(X). For a vortex state of the NLSE with winding number n, 200 = 2nO(X). The identification 
of 2 0  o with the velocity potential of the fluid vortex gives a determination of F, F = 4"rrn. The dynamics 
of widely separated fluid vortices has a simple characterization: A given vortex drifts with the current 
that would remain if that vortex were absent. Now consider the situation in asymptotic vortex dynamics 
of the NLSE: In (1.18), 2H  is analogous to the velocity potential of the residual flow in the absence of a 
vortex at X - - Q  and 2K is analogous to the residual current at Q. The dynamical boundary condition 
(1.20) states that a vortex at Q drifts with the residual current 2K. 

1.5. Vortex dynamics of  the N L H E  

From the NLHE, it follows that the phase field ~9 ° satisfies the linear heat equation 

O ° = AO °. (1.23) 

As before, asymptotic matching of core and far field expansions establishes the topological boundary 
condition (1.16) at each vortex position. Given the vortex trajectories and initial values of ~9 ° which 
satisfy the topological boundary conditions at the initial vortex positions, we may evolve O ° forward in 
time. Effects of noninstantaneous communication between the vortices are clearly evident here. In 
principle, we can solve for the phase field O ° as a functional of the initial conditions and vortex 
trajectories. Here, we choose to retain ~9 ° in the formulation of the asymptotic vortex dynamics. In this 
way, we naturally proceed to a genuine particle + field formulation of the asymptotic vortex dynamics. 

1.6. Dynamical boundary condition 

The formulation of the dynamical boundary condition is subtle because the far field and core 
expansions about a vortex position X = Q have components which are logarithmic in the displacement 
from the vortex. The local behavior of the far field phase @0 about X = Q is given by 

19°=nO(R)  + 0o+ ½n log( R / • )  JQ. " R + K" R + ~ ( R 2  log R).  (1.24) 

This expansion derives from the heat equation (1.23) and the topological boundary condition (1.16). 
0 o = Oo(T, E) and K = K(T,  •)  are not determined by local analysis about X - Q ( T ,  •). They contain 
information about the initial conditions on O ° and the past history of all the vortex trajectories: Their 
values are contained implicitly in the solution of the initial-boundary value problem for O °. 

The appearance of • in the factor log(R/e)  has a special significance: It renders the expansion (1.24) 
scale covariant. Each term of (1.24) is invariant under rescalings of the variables X, T, Q, induced by the 
change in the small but otherwise arbitrary gauge parameter •. When we change • to e', we are 
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effectively transforming X, T, Q into X', T', Q' defined by 

X ' / E '  = X / E  = X, T ' / E ' 2  = T i e  z = t ,  Q ' / c '  = Q / e .  

We easily deduce that R / e  - [ X -  Q(T, e)] /e  = [X' - Q'(T', E')]/e' -= R' /E,  O(R) = O(R'), and JQ(T, ~) " 
R = JO.'(T', ~')" R'. Hence the local expansion in prime variables is 

0 ° = nO(R')  + 0 6 + ½n log (R ' / e ' )  JQ." R' + K "  R' + t~(R '2 log R').  

Here, 06 = 06(T', E') denotes 00(T, ~') expressed as a function of T', and g ' =  K'(T',  E') is related to 
K = K(T,  ~) by the scaling EK' = eK. 

As in the analysis of the NLSE, we think of the vector K as the "locally uniform component" of phase 
gradient about X = Q. It determines the vortex velocity: The dynamical boundary condition on O ° at 
X = Q  is 

mQ = - 2 r d K  + , . (1 ) ,  (1.25) 

where m is a constant determined from the structure of the vortex state (1.5). 

1.7. Phenomenology 

We begin with a simple exact solution of the free boundary problem for asymptotic vortex dynamics of 
the NLHE. There is a single isolated vortex, surrounded by a phase field O ° whose gradient VO ° 
converges to a constant vector K® as IXI ~ oo. In this case, we anticipate that a uniform motion of the 
vortex with constant velocity eU is possible, and the problem is to compute U. Fig. 5 is a sketch of the 
situation, depicting the contours of constant phase O °, and the direction of K®. The dashed line is a cut 
where O ° has a necessary jump of 2"rr. 

We may compute the far field phase exactly, and extract the asymptotic limit of this exact solution as 
R --} 0. The result modulo an additive constant is 

0 ° = nO(R)  + ½n log(UR) JU" R + K®. R + ~ ( R  2 log R).  (1.26) 

l 
Fig. 5 
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(1.26) is equivalent to the general expression (1.24) if we take 

K = ½n log(eU) JU + K~. (1.27) 

The vortex velocity now follows from the dynamical boundary condition (1.25), 

log(e -m eU)U = 2nJK= + ,,(1). (1.28) 

This velocity is orthogonal to K® with clockwise (counterclockwise) orientation for n = + 1 (n = - 1). 
We present qualitative results about pairwise vortex interactions. Consider a pair of vortices at 

positions Q, Q' with winding numbers n and n', as depicted in fig. 6. An isolated vortex of winding 
number n' at position Q' has an associated phase ~adient field k ( X ) =  n ' J ( X - Q ' ) / I X - Q ' I  2. For the 
system of two vortices at positions Q, Q', k(Q) = n'JR/R, R =- Q - Q' provides a crude estimate of K, the 
locally uniform component of phase gradient at X = Q. The corresponding approximation to the vortex 
velocity Q is log(e -m E 0 )  Q = 2nn'(R/R). The approximate velocity of the vortex at a '  is given by 
log(e-mEQ')Q '--- -2n 'n (R /R) .  Fig. 6 depicts these induced velocities for the cases sgnn '=  sgnn, 

o 
Q 

\ 
.2,! , / | , I  

c! 

(a) sgn n = sgn n' 

\o 

(b) sgn n = -sgn n' 

\ 
Q, 

Fig. 6 

..x! 

Q, 

\ 
QY 
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Fig. 7 

sgn n ' =  - s g n  n. We see that like (opposite) vortices repel (attract) each other with a force inversely 
proportional to their separation. The numerical movie of Carlson and Miller in fig. 3a documents the 
mutual repulsion of two n = + 1 vortices produced by fission of an n = 2 vortex. Fig. 7 is another 
numerical movie, also by Carlson and Miller, documenting the attractive interaction between an n = + 1 
vortex and an n - - 1  vortex. We observe that the final fate of these opposite vortices is merger and 
mutual annihilation. 

2. Vortex dynamics of the nonlinear Schriidinger equation 

We derive the equations governing the far field phase O°(X,T,E) and the vortex trajectories 
X = Q(T, E) in the limit E ~ 0. 

2.1. Far field expansion 

We write the far field expansion in the polar form, 

d/~ ~(  X, T, e) = U( X, T, E) exp[ iO(X,  T, e ) ] .  (2 .1)  

anlage
Highlight
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From the NLSE (1.1) it follows that U and O satisfy 

( U  2 - 1 ) U  ~-- - e2U(OT ÷ IVOI 2) + e2 A U  ' 

UAO = - U r -  2VU" V@. 
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(2.2a) 

(2.2b) 

It follows from (2.2a) that evolutions with U bounded away from zero have U = 1 + C(e2). In this case, 
(2.2) becomes 

U =  1 - l e e ( o r +  IVOI 2) + ~ ( e 4 ) ,  (2.3a) 

A O  ----" ~ ( e 2 ) -  ( 2 . 3 b )  

Given solutions for U, O we recover ~/' from 

= Ue  i° ~ [1 - l e 2 ( O r  + [VO] 2) + ~ ( e 4 ) ]  eiO. (2.4) 

The leading order far field expansion is 

~O'0 = eiO ° (2.5) 

where O ° satisfies Laplace's equation 

AO ° = O. (2.6) 

2.2. Topological boundary condition and local structure o f  ~ o  about a vortex 

Recall that the leading order  core expansion 0 °, valid for r - x - Q / E  = ~(1),  is the vortex state 

0 ° = U ( r )  exp[i (n0 + 00) ] , (2.7) 

where r, 0 are polar coordinates of r,  n is the winding number of the vortex at X = Q, and 00 = Oo(T, e) 

is a slowly varying phase shift. From (1.8) it follows that U(r)  = 1 + ~ ( 1 / r  2) as r ~ 0% so 

~b ° = exp[ i (n0 + 00) ] + ~ ( 1 / r  2) (2.8) 

as r -~ oo. The obvious requirement for asymptotic matching of the leading order far field expansion gt0 
in (2.5) with the leading order  core expansion in (2.7) is 

0 ° ~ n O ( R )  + 0 o (2.9) 

as R - X - Q = er ~ O. (2.9) is the topological boundary condition on O ° at X = Q. 
We recall that the solution of Laplace's equation subject to the topological boundary condition takes 

the form 

0 ° = n O ( R ) +  H ( X ,  T ,  e ) ,  (2.10) 
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where H is a harmonic function of X in a neighborhood of X = Q. The local approximations of O ° and 
~ 0  about X = Q are 

O°~nO(R) +Oo + K . R  + @(R2), 

g t ° ~ e x p { i [ n O ( R )  + O0]}[1 + i K . R  + • ( R 2 ) ] ,  (2.11) 

where 0 o = Oo(T, E) = H(Q,  T, ~), and K = K(T,  ~) = VH(Q, T, E) is the locally uniform component of 
phase gradient at X--  Q. 

2.3. Core expansion 

Substituting the core expansion 

~ b ~ ~ b ( r , T , e ) ,  r - - x - Q ( T , ~ ) / ~  

into the NLSE (1.1), we deduce 

A~b + (1 - [~12)$ = - i (E2~/ , r -  EQ- V~b), (2.12) 

where all spatial derivatives are with respect to r. The two-term core expansion takes the form 

,-, ~b ° + E~b 1, (2.13) 

where 0 ° is the vortex state (2.7) which satisfies the leading order perturbation equation 

A~b ° + (1 - 10°12)~b ° = 0, (2.14) 

• and ~,1 satisfies the first-order perturbation equation 

Z~b 1 = iQ" VO °. (2.15) 

L is the variational operator of the leading order equation (2.14) about q,0: 

Lu - Au + (1 - 2[¢y°12)u - ~b°~. (2.16) 

We impose a higher-order matching, between the leading order far field expansion qto and the 
two-term core expansion ~o + e~l.  From the results for ~o and 1/,o in (2.8), (2.11), we deduce 

¢°(r, r , , )  + ¢ q / l ( r , T , . )  - ~ ° ( ¢ r , T , ¢ )  

-- ¢ , 1 ( r ,  T, ~) - i E K . r  exp[i(n0 + 0o) ] + C(E2r 2 + l / r 2 ) .  (2.17) 

Asymptotic matching requires that EK" r ---- : ( E r )  be larger in magnitude than the error terms : (~2 r2 )  
and : ( l / r 2 ) ,  and that the difference between ¢/1 and iK-  r be smaller in magnitude than iK" r = : ( r ) .  
Hence, the matching condition is 

d/l(r,  T )  - i K . r  exp[i(n0 + 0o) ] = , . ( r ) ,  (2.18) 
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in the overlap domain 

1 r =  : ( e P ) ,  - 1  < p  < 3" 

It is simple to check that this matching condition is formally consistent with the perturbation equation 
(2.15) for ~b 1. 

2.4. The dynamical boundary condition 

The perturbation equation (2.15) for ~/1 subject to the matching condition (2.18) determines the vortex 
velocity Q as a function of K in the limit e ~ 0. We present this determination here. The variational 
operator L in (2.16) is self-adjoint: Given smooth functions u(x), v(x) defined for x ~ R 2, and D any 
region of •2, 

fDRe(uL--v--o L--u) dx  = faDRe(uOnO-O~nu) dl. (2.19) 

Here, a n denotes outward normal derivative on 0D, and dl is the arclength element along aD. We apply 
this formula with u = ~" V6 °, where ~ is any fixed unit vector, and o = ~O 1. We take D to be a disk of 
radius r 0 about r = 0. We impose r 0 = t~(EP), - 1 < p  < - ½, so that the circle Irl = r0 lies in the overlap 
domain where the matching condition (2.18) applies. Taking the directional derivative ~. V of the leading 
order perturbation equation (2.14), we deduce Lu = L ( ~ .  V~b °) = 0. From the first-order perturbation 
equation (2.15) we have Lv= L~b I --- iQ" V6 °. Hence, (2.19) becomes 

flrl<roRe[i(~ " V~°)(Q • V~o) ] d r =  fl~l=roRe[(~ • Vl//O)~r~-l--~/l~r(t~ " V~-'O)] dl. (2.20) 

Here, qj0 is the known vortex state (2.7), and the asymptotic behavior of ~b 1 on [rl = r0 is given by the 
matching condition (2.18). Hence, we may explicitly evaluate the limit of (2.20) as E + 0. We obtain the 
equation 

(Q - 2K) "J~= ,~(1). (2.21) 

Since (2.21) holds for any choice of the unit vector ~, it follows that 

= 2 K +  ,~(1). (2.22) 

3. Vortex dynamics of the nonlinear heat equation 

The derivation of an asymptotic vortex dynamics for the NLHE follows in broad outline the treatment 
of the NLSE. But there is an additional degree of difficulty- the core and far field expansions both have 
components which are logarithmic in the displacement from a vortex center. A direct manifestation of 
these logarithmic terms is the appearance of log E as a parameter in asymptotic expansions of q,. Recall 
that a logarithmic dependence upon E is "slower" than any power of E, and we proceed by balancing 
~ ( e  m) and ~(E m log e) terms in the same perturbation equation. In particular, the leading order far field 
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phase O°(X, T, ~) has a logarithmic dependence upon e, and the dynamical boundary conditions at 
vortex positions leads to scaled vortex velocities Q which are C(1/ [ log  e [). 

3.1. The far field 

We write the far field expansion in polar form, as in (2.1). Substituting (2.1) into the NLHE leads to 
the pair of equations 

(U 2 - 1)U= --E2UT+ E2(AU - IVOI2U), 

UO r = UAO + 2VU" VO. 

(3.1a) 

(3.1b) 

It follows from (3.1a) that solutions with U bounded away from zero have U = 1 + ~(~2), in which case 
(3.1) reduces to 

U = 1 - ½E2IVOI  2 + d~(E4), 

O T -  A O = ~ ( E 2 ) .  

(3.2a) 

(3.2b) 

The leading order approximation O ° of the far field phase @ satisfies the heat equation 

O ° = A O  °. ( 3 . 3 )  

The leading order far field approximation gt0 of ~ is related to O ° by 

a/F0 = eiO °. 

3.2. The local structure of ~zo about a vortex 

(3.4) 

O ° satisfies the topological boundary condition (2.9) at vortex positions X--Q. Given an initial 
condition on O ° at T = 0 which satisfies the topological boundary condition at the initial vortex positions 
Q(0, e), and given the vortex trajectories Q(T, e) in T > 0, we may determine O ° in T > 0 which satisfies 
the heat equation (3.4) subject to the topological boundary condition at each vortex position. The 
remaining problem is to determine the dynamics of the vortices in response to the evolution of O °. The 
topological boundary condition (2.9) already provides the leading term of this expansion. We can 
systematically determine the forms of higher corrections. To this end, it is convenient to write the local 
expansion of O ° in terms of the translating spatial variable R - X -  Q. The heat equation (3.3) in R, T 
coordinates reads 

AOo = _ Q .  VO ° + 0 ° .  (3.5) 

All spatial derivatives are with respect to R. We write the local expansion of O ° about R = 0 in the form 

O°=nO(  R)  + Oo(T,E ) + H (  R , T , E ) .  (3.6) 

Consistency of (3.6) with the topological boundary condition requires H to be continuous in a 
neighborhood of R = 0, with H(0, T, ~) = 0. The two-term asymptotic expansion of H as R ~ 0 takes the 
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form 

H = (log R ) A "  R + K .  R + dY(R 2 log R),  (3.7) 

where A and K are vectors which are functions of T but independent of R. Substituting (3.6) into (3.5) 
we obtain a determination of A, A = ½nJQ, but no determination of K. In summary, the local expansion 
of O ° about R = 0 takes the form 

0 ° = n O ( R )  + 0 o + ½n(log R ) J Q .  R + K .  R + ~(R 2 log g),  (3.8) 

where K is not determined by the local analysis. 
For any positive constant a, we may redefine K so that the expansion 

O ° = n O ( R )  + 0 o + i n  log(aR) JQ" R + K" R + ~(R 2 log R) (3.9) 

is equivalent to (3.8). The choice a = 1/e  leads to a scale covariant form of the expansion, 

O ° = nO(R)  + 0 o + ½n l o g ( R / e )  J(~" R + K .  R + ~ ( R  2 log R).  (3.10) 

Recall from the discussion of section 1 that each term is invariant under rescalings of the variables 
R, T, Q induced by a change in the small but otherwise arbitrary gauge parameter e. We work with the 
scale covariant expansion (3.10) of 00. The corresponding expansion of gt0 = eiO ° is 

~0 __ exp{ i[ nO(R)  + 00]}[ 1 + Sin log(R/E) JQ" R + iK" R + ~ (  R 2 log R)] .  (3.11) 

As noted in section 1, the evolution of K in time T is contained implicitly in the solution of the 
initial-boundary value problem for O °. We call K the "locally uniform component of phase gradient at 
X = Q " .  

3.3. Core expansion 

The NLHE (1.2) in the "core" variables r - x - Q /e ,  T - eEt reads 

A6 + (1 - 1612)6 = e26 T -  eQ- v6 .  (3.12) 

The two-term core expansion takes the form 

6 ~ 60 + e61- (3.13) 

Here, 6 ° is the vortex state (2.7). 6 ° satisfies the leading order perturbation equation (2.14) as in the 
analysis of the NLSE, and the first-order perturbation equation is 

L61 = - Q - V 6  °, (3.14) 

where L is the variational operator (2.16). 



Z C Neu / Vortices in complex scalar fields 403 

As before, we impose an asymptotic matching of the leading order far field expansion ~0  and the 
two-term core expansion ~0 + Eft1. From (2.8), (3.11) it follows that 

~b°(r,T,e) + ~bl(r ,T,E) - ~ ° ( e r , T , e  ) 

= e01(r ,  T, e) - ie[½n(log r) JQ. + K ] . r  exp[i(n0 + 00) ] + ~ E 2 r  2 log Er + ~-~ . (3.15) 

The matching condition is that 

~ l ( r , T , , )  = i[½n(log r)  JQ + K] "r  +,~(r)  (3.16) 

in the overlap domain r---~(eP),  - 1  < p  < -  ½. The matching condition (3.16) is consistent with 
formally constructed asymptotic solutions to the first-order perturbation equation (3.14). 

3.4. The dynamical boundary condition 

The first-order perturbation equation (3.14) for ~b 1 subject to the effective boundary condition (3.15) 
determines the leading approximation to the vortex velocity K in the limit ~ ~ 0. From (3.14), (3.15) we 
derive the identity 

Ilrl<roRe[ -- (e " V~°)(Q " V~6)] d r =  flrl_roRe[(e''V~b°)O~T-~'Or(e''V~O)] dl' (3.17) 

which is the direct counterpart of (2.20). Again the procedure is to evaluate both sides of (3.17) with r 0 in 
the overlap domain, r 0 = C(e-P),  - 1  < p  < - ] and take the limit of (3.17) as ~ ~ 0. The actual 
mechanics of this calculation has some interesting features. We observe the cancellation of components 
which are logarithmic in r0, and the balance of ~(1)  components independent of r o gives the asymptotic 
determination of Q in terms of K. 

Substituting into the l.h.s, of (3.17) the representation ~0 ___ U(r)exp{i[n0 + #0(T)]} of the vortex state, 
we find that 

1.h.s. = - ~ r (8 -  Q) U~2 + -~T rdr .  (3.18) 

Here, we used n = + 1 or - 1 so n 2 = 1. From the asymptotic behavior of U(r) as r ~ oo, U(r) = 1 + 
~(1 / r2 ) ,  it follows that 

l.h.s. = - ~r(log r o + a ) ( 8 "  Q) + C ( 1 / r  g) (3.19) 

as r o ~ oo. Here, a is a constant independent of r0, 

a -  lim o U 2 +  r d r - l o g r  o . (3.20) 
r0---~ ¢o 
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Substituting into the r.h.s, of  (3.17) the asymptotic form (3.16) of ~01 valid in the overlap domain 
r = C(eP),  - 1 < p  < - 1, we find that 

r.h.s. = - 'n ' ( log r 0 + 1)(~" {2) + 2'rrn~ "JK + ,~(1). (3.21) 

In imposing equality of the 1.h.s. and r.h.s, as given by (3.19), (3.21) we see that the log r 0 terms 
automatically cancel, and that the remaining terms lead to the condition 

(mQ + 2 n J K ) .  $ = ,.(1) (3.22) 

as e ~ 0. Here,  m - 1 - a. Since (3.22) holds for all unit vectors $, it follows that 

mQ = - 2 n J K  + , . (1 )  

as E ~ 0. This relationship between the vortex velocity Q and the locally uniform component of phase 
gradient K at X--  Q is the dynamical boundary condition on O0 at X = Q. 

3.5. Vortex in a uniform phase gradient 

In the discussion of phenomenology in section 1, we examined the motion of a single isolated vortex 
surrounded by a phase field O ° whose gradient asymptotes to a constant vector Koo at spatial infinity. 
The formula (1.28) for the velocity is based upon the relationship (1.27) between the phase gradient K~ 
at spatial infinity and K, the locally uniform component of phase gradient at the vortex. This result is 
based upon an exact solution for O °. The implementation of the topological boundary condition in the 
construction of this solution is of particular interest. 

Let  (X,  Y) be a right-handed Cartesian coordinate system of •2 centered on the uniformly moving 
vortex center. The X axis is parallel to K~ and we anticipate that the vortex velocity U is orthogonal to 
K~, so U = UI~. Solutions of the heat equation (3.3) which are time independent  in the translating (X,  Y) 
frame satisfy 

AO ° + UO ° = 0. (3.23) 

We require a solution which satisfies the topological boundary condition, 

0o ~ nO(R) as R = IX[ ~ ~,  (3.24a) 

and 

VO ° ~ K® as R ~ oo. (3.24b) 

The topological boundary condition requires O ° to be multivalued. We compute a branch of O ° in the 
slit plane with the negative Y axis excluded: The values of O(R) are taken in the interval - ~ / 2  < 0 < 
3w/2 .  The jump in O ° across the slit is 2~n .  



J.C Neu / Vortices in complex scalar fields 405 

The solution of the elliptic boundary value problem (3.23)-(3.24) may be constructed from the 
fundamental solution G( x ), satisfying 

AG + UGv= 2arn6( X ) ,  (3.25a) 

G ~ 0 as R ~ ~. (3.25b) 

The process is quite analogous to determining O(X)= arc tan(Y/X)  from its harmonic conjugate 
log[(X 2 + y2)a/2], which is proportional to the fundamental solution of the Laplacian in two dimensions. 

These are the details: From the divergence theorem and (3.25) we deduce 

fc  - ( G r  + UG) d X +  G x d Y =  2rrn, (3.26) 

where C is a counterclockwise loop enclosing X = 0. Comparing (3.26) to the topological constraint 

fc V19 - d X =  f c 1 9 ° d X +  19° dY= 2,rrn, 

we see that the latter is automatically satisfied if 190 is related to G in IXI > 0 by 

19 ° = -- a y  - UG, (3.27a) 

19o = G x" (3.27b) 

These relations may be thought of as analogs of Cauchy-Riemann equations with O ° and G "conjugate" 
to each other. We check that (3.27) is consistent with (3.23) and (3.25a). In IxI > 0, it follows from (3.27) 
that 

O°x  + O°y  + UO ° =  - G r x -  UG x + G x r  + UG x = O, 

and 

G x x  + G r y  + UG r = O°rx -  O ° y  = O. 

A consequence of (3.27) is that solutions O ° of (3.23) satisfying the topological boundary condition 
(3.24a) may be computed from a line integral, 

0 ° =  f O°dX+ O ° dY= f - ( G y +  UG)dX+ GxdY 

= f ( V G  + dl. (3.28) 

Here, y is any path in the slit plane from a fixed point X 0 to X, ~ is the unit normal to y and l is the 
archlength along y. 
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The fundamental solution G satisfying (3.25) is 

G( R, O) = - n  exp( - 1UR sin O)Ko( I IUIR), (3.29) 

where R, 0 are polar coordinates of X, and K 0 is the Bessel function of order zero. From this result for 
G, we see that Gx = 0 along the negative Y axis, which is the slit in the X, Y plane. It follows from (3.28) 
that (90 is constant along either side of the cut. Given X, we take the path 3' in (3.28) to be the arc of a 
circle of radius IXl extending from the cut to X in the counterclockwise direction. The resulting solution 
for @0, up to a constant of integration, is 

O°( R,O) =nR f°_./2[GR( R,~ ) + Usin ~ G( R,~)] dr.. (3.30) 

It is simple to show that O ° given in (3.30) satisfies V O ° ~  0 as R ~ oo. To obtain a solution which 
satisfies the boundary condition VO ° ~ K® as R --* 0% we add the term K®X = KooR cos 0 to (3.30), which 
is a solution of (3.23) by itself. Hence, the exact solution of the boundary value problem (3.23), (3.24) to 
within a constant is 

O°( R,O) = nR f°_.~/E[ Gg( R,~ ) + Usin ~ G( R,~)] d~ + r®R cosO. (3.31) 

The asymptotic expansion of this exact solution as R --, 0 is 

0 ° = nO(R) - [½nU log( I UIR ) - goo] R cos 0 + ~ ( R  2 log R) 

= nO(R) + ½n log( I UIR) JU" g + K~" R + ~ ( R  2 log R).  (3.32) 

Comparing this result for O ° with the general expansion (3.10) about a vortex with velocity 12 -- U = US, 
we deduce the relationship between K~ and K, and the locally uniform component of the phase gradient 
at the vortex, 

K= ~nl Iog(elUI)JU + K~. (3.33) 
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