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Introduction

1.1 THE HELIUM LIQUIDS

There are two stable isotopes of the chemical element helium: helium 3 and
helium 4, conventionally denoted by He and *He respectively. The
existence of the heavier one, “He, had already been established indirectly in
1871 by its characteristic line in the solar spectrum (hence the name
“helium”). Then in 1895 Ramsay succeeded in obtaining an actual sample
of “He gas by heating the uranium ore cleveite. It was later found that ‘He
is also part of the Earth’s atmosphere, but only at a fraction of about
2x107°. Kamerlingh Onnes was the first to liquefy *He in 1908. For a
fascinating account of the history of early helium physics and of low-
temperature physics in general, we refer the reader to the books by Keesom
(1942) and Mendelssohn (1977).

The discovery and identification of the lighter isotope *He was only made
much later (Oliphant et al. 1933). In fact, at that time it was thought that
the “He isotope was unstable and that tritium (*H) was stable. Using a
cyclotron as a mass spectrograph, Alvarez and Cornog (1939a,b) then
showed that *He is indeed a stable isotopic constituent of “ordinary”
helium. However, in the atmosphere *He constitutes only one part in a
million of the total helium content, which is so small anyway. The quantities
of *He needed for low-temperature experiments can only be produced by
nuclear reactions such as

SLi+in—3H + %« (1.1a)
and the subsequent decay of the tritium
iH—3He + e (1.1b)

Clearly, this was not possible until after the end of the Second World War.
The condensation of *He gas and the first experimental work on the new
liquid were achieved by Sydoriak et al. (1949a,b). Somewhat larger quantities
of *He became available only in the late 1950s. Since then, macroscopic
samples of *He have been investigated intensively and at lower and lower
temperatures.




2 1 Introduction

By the time experimental *He physics eventually started, the theoretical
and experimentai investigations of *“He had been going on for such a long
time and had yielded so many novel results that “helium” was used
synonymously for *He. While this tradition can be found even in today’s
scientific literature, one may expect the situation to change in the future.
After all, the low-temperature phases (normal, superfluid, solid) of *He
have led to a unique muititude of fundamentally new concepts and have
thereby enlarged our knowledge of the possible states of condensed matter
more than any other single-component system previously studied.

I'rTom a microscopic point of view, helium atoms are structureless
spherical particles interacting via a two-body potential that is well under-
stood (see Chapter 2). The attractive part of the potential, arising from
weak van der Waals-type dipole (and higher multipole) forces, causes
helium gas to condense into a liquid state at temperatures of 3.2K and
4.2 K for *He and “He respectively, at normal pressure. The pressure versus
temperature phase diagrams of *He and *He are shown in Figs. 1.1 and 1.2.
When the temperature is decreased even further one finds that the helium
liquids, unlike all other known liquids, do not solidify unless a pressure of
around 30 bar is applied. This is the first remarkable indication of
macroscopic quantum effects in these systems. The origin of this unusual
bekaviour lies in the quantum-mechanical uncertainty principle, which
requires that a quantum particle can never be completely at rest at given
position, but rather performs a zero-point motion about the average
position. The smaller the mass of the particle and the weaker the binding
force, the stronger these oscillations are. In most solids the zero-point
motion is confined to a small volume of only a fraction of the lattice-cell
volume. In the case of helium, however, two features combine to prevent
the formation of a crystalline solid with a rigid lattice structure: (i) the
strong zero-point motion arising from the small atomic mass (helium is the
second-lightest element in the periodic table); and (ii) the weakness of the
attractive interaction due to the high symmetry of these simple atoms.

It is this very property of helium—of staying liquid—that makes it such a
valuable system for observing quantum behaviour on a macroscopic scale.

Quantum effects are also responsible for the strikingly different be-
haviours of “He and *He at even lower temperatures. Whereas “He
undergoes a second-order phase transition (Kamerlingh Onnes 1911b,
Kamerlingh Onnes and Boks 1924, Keesom and Wolfke 1928) into a state
later shown to be superfluid (Kapitza 1938, Allen and Misener 1938), i.e.
where the liquid is capable of flowing through narrow capillaries or tiny
pores without friction, no such transition is observed in liquid *He in the
same temperature range (see Figs. 1.1 and 1.2). The properties of liquid
*He below 1K are nevertheless found to be increasingly different from those
of a classical liquid. It is only at a temperature roughly one thousandth of
the transition temperature of “He that *He also becomes superfluid, and in
fact forms several superfluid phases, each of which has a much more
complex structure than that of superfiuid “He.
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The striking difference in the behaviours of *He and ‘He at low
lemperatures is a consequence of the laws of quantum theory as applied to
systems of identical particles, i.e. the laws of quantum statistics. The “He
atom, being composed of an even number of electrons and nucleons, has
spin zero and consequently obeys Bose—Einstein statistics. In contrast, the
*He nucleus consists of three nucleons, whose spins add up to give a total
nuclear spin of / =1, making the total spin of the entire *He atom 1 as well.
Consequently liquid *He obeys Fermi-Dirac statistics. So it is the tiny
nuclear spin, buried deep inside the helium atom, that is responsible for all
the differences of the macroscopic properties of the two isotopes.

Since in a Bose system single-particle states may be multiply occupied, at
iow temperatures this system has a tendency to condense into the
lowest-energy single-particle state (Bose—Einstein condensation). It is
believed that the superfluid transition in “He is a manifestation of
Bose~Einstein condensation. The all-important qualitative feature of the
Bose condensate is its phase rigidity, i.e. the fact that it is energetically
favourable for the particles to condense into a single-particle state of fixed
quantum-mechanical phase, such that the global gauge symmetry is spon-
taneously broken. As a consequence, macroscopic flow of the condensate is
(meta)stable, giving rise to the phenomenon of superfluidity.

In a Fermi system, on the other hand, the Pauli exclusion principle allows
only single occupation of fermion states. The ground state of the Fermi gas
is therefore the one in which all single-particle states are filled up to a
limiting energy, the Fermi energy Er. As predicted by Landau (1956, 1957,
1958) and later verified experimentally (for a review see Wheatley 1966),
‘the properties of *He well below its Fermi temperature Tz = Epfkp~1K
are similar to those of a degenerate Fermi gas. In particular, the formation
of a phase-rigid condensate is not possible in this framework. Until the
mid-1950s a superfiuid phase of liquid *He was therefore believed to be
ruled out. On the other hand, it is most remarkable that the property of
.superfluidity (see F. London 1950, 1954) was indeed first discovered
experimentally in a Fermi system, namely that of the “liquid” of conduction
electrons in a superconducting metal (Kamerlingh Onnes 1911a). The
-superfluidity of *He was only found more than 25 years later.

The key to the theory of superconductivity (Bardeen, Cooper and
Schrieffer (BCS) 1957) turned out to be the formation of “Cooper pairs”,
ie. pairs of electrons with opposite momentum k and spin projection o:
(47, —k|). These particular Cooper pairs are structureless objects, i.e. the
two partners form a spin-singlet state in a relative s-wave orbital state.
Cooper pairs may therefore be looked upon in a way as composite bosons,
which all have the same pair wave function and are all in the same
quanium-mechanical state. Hence in this picture the transition to the
superconducting state corresponds to the formation of Cooper pairs that are
automatically Bose-condensed, the condensate being characterized by
Macroscopic quantum coherence. Such a picture requires some qualification
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(see Chapter 12), but is nevertheless very helpful for an understanding of
many basic properties of superconductors.

While in free space an attractive force has to be sufficiently strong to bind
two electrons, inside the metal the presence of the filled Fermi sea of
conduction electrons blocks the decay of a Cooper pair, so that an
arbitrarily small attractive interaction leads to the formation of stable
Cooper pairs. The attractive interaction between the electrons of a Cooper
pair in a conventional superconducting metal is due to the exchange of
virtual phonons (electron—phonon interaction). If the phonon-mediated
interaction is strong enough to overcome the repulsive Coulomb interac-
tions between the two electrons then a transition into a superconducting
state. may occur. On the other hand, any other mechanism leading to
attraction between electrons at the Fermi surface is equally well suited for
producing superconductivity.

1.2 EARLY HISTORY OF SUPERFLUID *He

Given the success of the BCS theory in the case of superconductivity, it was
natural to ask whether a similar mechanism might also work for liquid *He.
Since there is no underlying crystal lattice in the liquid that could mediate
the attractive force, the attraction must clearly be an intrinsic property of
the one-component *He liquid itself. The main feature of the interatomic
*He potential is the strong repulsive component at short distances, and the
weak van der Waals attraction at medium and long distances. It soon
became clear that, in order to avoid the hard repulsive core and thus make
optimal use of the attractive part of the potential, the *He atoms would have
to form Cooper pairs in a state of nonzero relative angular momentum /. In
this case the Cooper-pair wave function vanishes at zero relative distance,
thus cutting out the most strongly repulsive part of the potential. In a
complementary classical picture one might imagine the partners of a Cooper
pair revolving about their centre of gravity, thus being kept away from each
other by the centrifugal force.

A first estimate of the transition temperature for Cooper pairs with large
relative angular-momentum quantum number, bound by the long-range tail
of the van der Waals attraction (which was argued to be essentially
unrenormalized by many-body effects), yielded unattainably low values
(Pitaevskii 1959). Another line of approach was based on an approximate
calculation of the effective pair interaction, taking multiple scattering into
account; this yielded an attraction for d-wave pairs (Brueckner et al. 1960)
but repulsion for s-wave pairs (Cooper er al. 1959). Other proposals for
anisotropic, i.e. non-s-wave Cooper pairing, were due to Thouless (1960),
Emery and Sessler (1960) and Galasiewicz (1960, 1969). However, from a
modern point of view, none of these attempts was sophisticated enough. As
more experimental data on liquid *He became available, it was soon
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realized that this is a strongly interacting system. The entities forming the
Cooper pairs are not the bare *He atoms but are rather the quasiparticles of
Landau’s theory. These quasiparticles are single-particle excitations, which
are sometimes viewed as particles surrounded by a polarization cloud of
other particles. In fact, the effective mass of such quasiparticles may be as
much as six times the bare atomic mass. Similarly, the interactions between
. quasiparticles were found to be very strong. It is then not surprising that the
- bare atomic potential bears little resemblance to the effective quasiparticle
potential.
These difficulties notwithstanding, several authors considered the prop-
ertics of non-s-wave pairing states. Anderson and Morel (1960, 1961) gave
an extensive discussion of the thermodynamic properties of general ani-
+ sotropic states, ccncentrating on d-wave states, but introducing also the
socalled ““axial” p-wave state (later named the Anderson—Brinkman~Morel
(ABM) state). This state has the peculiar feature that the energy-gap
function has nodes (i.e. zero-points) on the Fermi surface, with the
orbital-angular-momentum projection pointing along the direction of these
' nodes. In fact this state turned out to describe one of the superfluid phases,
' the A phase, which was to be discovered only much later. These authors
 realized that the antisymmetry of the Cooper-pair wave function under
. exchange of the two particles requires the spin state to be the triplet state
| for any odd angular momentum. In contrast, any even-parity Cooper pair
'~ (e.g. a d-wave pair) is in the spin-singlet state. Clearly, a general p-wave
| Cooper pair must therefore have three spin substates—not only two, like
' that discussed by Anderson and Morel (1960, 1961). Indeed, Vdovin (1963)
+ and Balian and Werthamer (1963) showed that, within weak-coupling
| theory, a state with an equal admixture of all three states is energetically
' favoured at all temperatures. The energy gap of this state (later called the
- Balian-Werthamer (BW) state) was found to be isotropic, just as in the
 case of s-wave pairing, despite the intrinsic anisotropy of the Cooper-pair
+ wave function. Nevertheless, its magnetic properties are as complex and

anisotropic as that of the ABM state. The BW state was also shown to

sustain order-parameter collective oscillations of a type never encountered
- before (Vdovin 1963), although this work remained unknown outside the
 Soviet Union. The BW state turned out to describe the superfluid B phase,
 observed at temperatures below which the A phase is stable.

Another important early advance in the description of the properties of
 these hypothetical states was made by Leggett (1965a,b), who showed that
i the thermodynamic properties would be strongly renormalized (in a
- temperature-dependent way) by Fermi-liquid interaction effects.

Meanwhile, a better understanding of the physically relevant processes
 leading to large renormalization effects, and in particular of the important
 role of spin fluctuations, began to emerge. It was realized that ferromag-

netic spin fluctuations favour spin-triplet/odd-/ states over spin-singlet/even-
I states (Emery 1964). The consequences of spin fluctuations for the
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thermodynamic and transport properties were worked out and found to be
in qualitative agreement with experiment (Berk and Schrieffer 1966,
Doniach and Engelsberg 1966, Brenig and Mikeska 1967, Brenig et al. 1967,
Rice 1967a,b, Brinkman and Engelsberg 1968, Riedel 1968). A detailed
calculation of the influence of spin fluctuations on the transition tempera-
ture for anisotropic pairing gave clear preference for spin-triplet/odd-{ pair-
ing (Layzer and Fay 1968, 1971, Nakajima 1973) and yielded values of T,
that were rather encouraging (Layzer and Fay 1968). A quantitative pre-
diction of T, however, was not possible on this basis. For an account of early
theoretical work on superfluid *He see Anderson and Brinkman (1975, 1978).

When the superfluid phases of *He were finally discovered in 1971 at
temperatures of about 2.6 mK and 1.8mK respectively (Osheroff et al.
1972a), in an experiment actually designed to observe a magnetic phase
transition in solid *He, the results came as a great surprise.

1.3 ELEMENTARY DISCUSSION OF SUPERFLUID 3He

Soon after the discovery of the phase transitions by Osheroff, Richardson
and Lee (1972a), it was possible to identify altogether three distinct stable
superfluid phases of bulk *He (see Chapter 4); these are referred to as the
A, B and A, phases. In zero magnetic field only the A and B phases are
stable. In particular, in zero field the A phase only exists within a finite
range of temperatures, above a critical pressure of about 21 bar. Hence its
region of stability in the pressure—temperature phase diagram has a roughly
triangular shape as shown in Fig. 1.1. The B phase, on the other hand,
occupies the largest part of this phase diagram and is found to be stable
down to the lowest temperatures attained so far. Application of an external
magnetic field has a strong influence on this phase diagram. First of all, the
A phase is now stabilized down to zero pressure. Secondly, an entirely new
phase, the A, phase, appears as a narrow wedge between the normal state
and the A and B phases. Since the magnetic field changes the structure of
the A and B phases somewhat, they are referred to as A, and B, phases
respectively. Thus the A, and B, phases are just the old A and B phases in
the presence of a magnetic field. This is summarized in Table 1.1, and the
full P-H-T phase diagram is shown in Fig. 4.2.

Owing to the theoretical work on anisotropic superfluidity that had been
carried out before the actual discovery of superfluid °He, progress in
understanding the detailed nature of the phases was very rapid. This was
clearly also due to the excellent contact between experimentalists and
theorists, which greatly helped to develop the right ideas at the right time.
In particular, it fairly soon became possible to identify the A phase and the
B phase as realizations of the states studied previously by Anderson and
Morel (1960, 1961) and Balian and Werthamer (1963) respectively. There-
fore the A phase is described by the so-called “Anderson—Brinkman—



8 1 Introduction

Table 1.1 Superfluid phases of *He.

External magnetic Stable phases

field H

H=0 A phase
B phase

H+0 A, phase

A, phase (=A phase in a magnetic field)
B, phase (=B phase in a magnetic field)

Morel” (ABM) state, while the B phase is described by the “Balian—
Werthamer” (BW) state. Consequently, “A phase” and “ABM state” are
now used as synonyms; the same is true in the case of “B phase” and “BW
state”. (The fact that the ABM state describes the A phase and the BW
state the B phase is a very fortunate concidence—if it was the other way
around, it would be quite confusing!).

Although the three superfluid phases all have very different properties,
they have one important thing in common: the Cooper pairs in all three
phases are in a state with parallel spin (S =1) and relative orbital angular
momentum /= 1. This kind of pairing is referred to as “spin-triplet p-wave
pairing”. In contrast, prior to the discovery of the superfluid phases of *He,
Cooper pairing in superconductors was only known to occur in a state with
opposite spins (S=0) and /=0, i.e. in a “spin-singlet s-wave state”. It
should be noted that Cooper pairs in a superconductor and in superfluid *He
are therefore very different entities: in the former case pairs are formed by
pointlike, structureless electrons and are spherically symmetric, while in the
case of He Cooper pairs are made of actual atoms (or rather of
quasiparticles involving *He atoms) and have an internal structure
themselves.

1.3.1 The internal structure of Cooper pairs

Quantum-mechanically, a spin-triplet configuration (S =1) of two particles
‘ has three substates with different spin projection S,. They may be
represented as [11) with S, =41, 27211} + | 1)) with S,=0and ||})
with §, = —1. The pair wave function ¥ is in general a linear superposition
of ail three spin substates, i.e.

=1 (k) M)+ oAU ) + 1)) + wr (k) 1), (1.2)

. where ¥, .(k), ¥, (k) and v, _(k) are the three complex-valued ampli-
tudes of the respective substates. In the case of a superconductor, where
§=0and /=0, the pair wave function is much simpler, i.e. it is given by

h
=
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only a single component

Wsc= U’o('“) _HrT))y (13)

with a single amplitude .

So far we have only taken into account that, since S = 1, there are three
substates for the spin. The same is of course true for the relative orbital
angular momentum / = 1 of the Cooper pair, which also has three substates
I, =0, £1. This fact is important if we want to investigate the amplitudes
Y14 (k) etc. further. They still contain the complete information about the
space (or momentum) dependence of ¥. The pair wave function ¥ is
therefore characterized by three spin substates and three orbital substates,
i.e. by altogether 3 X 3 =9 substates with respect to the spin and orbital
dependence. Each of these nine substates is connected with a complex-
valued parameter. Here we see the essential difference between Cooper
pairs with §=/=0 (conventional superconductors) and S=1/=1 (*He):
their pair wave functions are very different. In the former case a single
complex-valued parameter is sufficient for its specification, in the latter case
of superfluid *He nine such parameters are required. This also expresses the
fact that a Cooper pair in superfluid *He has an internal structure, while that
for a conventional superconductor does not: because / =1, it is intrinsically
anisotropic. This anisotropy may conveniently be described by specifying
some direction with respect to a quantization axis both for the spin and the
orbital component of the wave function.

In order to understand the novel properties of superfluid *He, it is
therefore important to keep in mind that there are two characteristic
directions that specify a Cooper pair. Here lies the substantial difference
from a superconductor and the origin of the multitude of unusual
phenomena occurring in superfluid *He: the structure of the Cooper pair is
characterized by internal degrees of freedom. Nevertheless, in both cases the
superfluid/superconducting state can be viewed as the condensation of a
macroscopic number of these Cooper pairs into the same quantum-
mechanical state, similar to a Bose—Einstein condensation.

1.3.2 Broken symmetry and the order parameter

In the normal liquid state Cooper pairs do not exist. Obviously, in the
superfluid a new state of order appears, which spontaneously sets in at the
critical temperature 7,. This particular transition from the normal to the
superfluid, i.e. into the ordered state, is called “continuous”, since the
condensate—and hence the state of order—builds up continuously. This fact
may be expressed quantitatively by introducing an “‘order parameter” that is
finite for T <T, and zero for T=T.. A well-known example of such a
transition is that from a paramagnetic to a ferromagnetic state of a metal

when the system is cooled below the Curie temperature. In the paramag-
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netic regime the spins of the particles are disordered such that the average
magnetization (M) of the system is zero. By contrast, in the ferromagnetic
phase the spins are more or less aligned and (M) is thus finite. In this case
the system exhibits long-range order of the spins. The degree of ordering is
quantified by |(M )|, the magnitude of the magnetization. Hence M is called
the “order parameter” of the ferromagnetic state. Clearly, the existence of
a preferred direction M of the spins implies that the symmetry of the
ferromagnet under spin rotations is reduced (“broken™) when compared
with the paramagnet: the directions of the spins are no longer isotropically
distributed, and the system will therefore no longer be invariant under a
spin rotation. This phenomenon is called “spontaneously broken sym-
metry”’; it is of fundamental importance in the theory of phase transitions. It
describes the property of a macroscopic system (i.e. a system in the
thermodynamic limit) that is in a state that does not have the full symmetry
of the microscopic dynamics.

The concept of spontaneously broken symmetry also applies to supercon-
ductivity and superfluid *He. In this case the order parameter measures the
existence of Cooper pairs and is given by the probability amplitude for a
pair to exist at a given temperature. It follows from the discussion of the
possible structure of a Cooper pair in superfluid *He that the associated
order parameter will reflect this structure and the allowed internal degrees
of freedom. What then are the spontaneously broken symmetries in
superfluid *He?

As already mentioned, the interparticle forces between the *He atoms are
rotationally invariant in spin and orbital space and, of course, conserve
particle number. The latter symmetry gives rise to a somewhat abstract
symmetry called ‘“‘gauge symmetry”. Nevertheless, gauge symmetry is
spontaneously broken in any superfluid or superconductor (see Chapter 3).
In addition, in an odd-parity pairing superfluid as in the case of ’He, where
=1, the pairs are necessarily in a spin-triplet state, implying that rotational
symmetry in spin space is broken, just as in a magnet. At the same time, the
anisotropy of the Cooper-pair wave function in orbital space calls for a
spontancous breakdown of orbital rotation symmetry, as in liquid crystals.
All three symmetries are therefore simultaneously broken in superfluid *He.
This implies that the A phase, for example, may be considered as a
“superfluid nematic liquid crystal with (anti)ferromagnetic character”. One
might think that a study of the abovementioned broken symmetries could be
performed much more easily by investigating them separately, i.e. within
the isotropic superfluid, the magnet, the liquid crystal etc. itself. However,
the combination of several simultaneously broken continuous symmetries is
more than just the simple sum of the properties of all these known systems.
Some of the symmetries broken in superfluid *He are “relative” symmetries,
such as spin-orbit rotation Symmetry or gauge-orbit symmetry (Leggett
1972, 1973b, Liu and Cross 1978). Because of this, a rigid connection is
established between the corresponding degrees of freedom of the condens-
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ate, leading to long-range order only in the combined (and not in the
individual) degrees of freedom. This particular kind of broken symmetry,
for example the so-called “spontaneously broken spin—orbit symmetry”,
gives rise to very unusual behaviour, as will be discussed later. The whole
concept of broken symmetries in superfluid *He and its consequences will be
discussed in detail in Chapter 6.

It is clear that in principle the internal degrees of freedom of a spin-triplet
p-wave state allow for many different Cooper-pair states and hence
superfluid phases. (This is again different from ordinary superconductivity
with § =0, /=0 pairing, where only a single phase is possible.) Of these
different states, the one with the lowest energy for given external para-
meters will be realized. In fact, Balian and Werthamer (1963) showed, that,
within a conventional “weak-coupling” approach, of all possible states there
is precisely one state (the BW state) that has the lowest energy at all
temperatures. This state is the one that describes the B phase of superfluid
*He. The state originally discussed by these authors is one in which the
orbital angular momentum / and spin § of a Cooper pair couple to a total
angular momentum J =/ +§ = 0. This *P, state is, however, only a special
case of a more general one with the same energy (in the absence of
spin—orbit interaction), obtained by an arbitrary rotation of the spin axes
relative to the orbital axes of the Cooper-pair wave function. Such a
rotation may be described mathematically by specifying a rotation axis i
and a rotation angle 6. In the BW state all three spin substates in (1.2)
occur with equal measure. This state has a rather surprising property: in
spite of the intrinsic anisotropy, the state has an isotropic energy gap (see
Fig. 3.4a). (The energy gap is the amount by which the system lowers its
energy in the condensation process, i.e. it is the minimum energy required
for the excitation of a single particle out of the condensate.) Therefore the
BW phase resembles ordinary superconductors in several ways. On the
other hand, even though the energy gap is isotropic, the BW state is
intrinsically anisotropic. This is clearly seen in dynamic experiments in
which the Cooper-pair structure is distorted. For this reason the BW state is
sometimes referred to as “pseudo-isotropic”’. Owing to the quantum
coherence of the superfluid state, the rotation axis # and angle @
characterizing a Cooper pair in the BW state are macroscopically defined
degrees of freedom, whose variation is physically measurable.

Since in weak-coupling theory the BW state always has the lowest energy,
an explanation of the existence of the A phase of superfluid *He obviously
requires one to go beyond such an approach and to include ““strong-coupling
effects”, as will be discussed in Chapter 5. In view of the fact that at present
microscopic theories are not capable of computing transition temperatures
for *He, it is helpful to single out a particular effect that can explain the
stabilization of the A phase over the B phase. As shown by Anderson and
Brinkman (1973), there is such a conceptually simple effect, which is based
on a feedback mechanism: the pair correlations in the condensed state
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pressures, since spin fluctuations become more pronounced only at higher
pressures. This state, which is now referred to as the “ABM state” (from
the initials of these three authors), does indeed describe the A phase. It has
the property that, in contrast with *He-B, its magnetic susceptibility is
essentially the same as that of the normal liquid. This is a clear indication
that in this phase the spin substate with S, =0, which is the only one that
can be reduced appreciably by an external magnetic field, is absent.
Therefore *He-A is composed only of |11) and [§) Cooper pairs. This
implies that the anisotropy axis of the spin part of the Cooper-pair wave
function, called d, has the same, fixed, direction in every pair. (More
precisely, d is the direction along which the total spin of the Cooper pair
vanishes: d 8 =0C.) Likewise, the direction of the relative orbital angular
momentum / is the same for all Cooper pairs. Therefore in the A phase the
anisotropy axes d and { of the Cooper-pair wave function are long-range-
ordered, i.e. are preferred directions in the whole macroscopic sample. This
implies a pronounced anisotropy of this phase in all its properties. In
particular, the value of the energy gap now explicitly depends on the
direction in k space on the Fermi sphere and takes the form

AiT) = Ay(TH[1 - (k - h»~=. (1.4)

Hence the gap vanishes at two points on the Fermi sphere, namely along +7
(see Fig. 3.4b). Because of the existence of an axis /, the ABM state is also
called the ‘“‘axial state”. The existence of nodes implies that in general
quasiparticle excitations may take place at arbitrarily low temperatures.
Therefore, in contrast with *He-B or ordinary superconductors, there is a
finite density of states for excitations with cnergies below the average gap
energy, leading for example to a specific heat proportional to T2 at low
temperatures (see Chapters 3 and 7).

The third experimentally observable superfluid phase of *He, the A,
phase, is only stable in the presence of an external magnetic field. In this
phase Cooper pairs are all in a single spin substate, the I11) state,
corresponding to S, = +1; the components with {1 ) + |1} and |}{ ) states
are missing. It is therefore a magnetic superfluid, the first ever observed in
nature.

1.3.3 Orientational effects

For a pair-correlated superfluid, the pairing interaction is the most
important interaction, since it is responsible for the formation of the
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condensate  itself. Nevertheless, there also exist other, much wcaker.
interactions, which may not be important for the actual transition to the
pair-condensed state, but which do become important if their symmetry
differs from the aforementioned. In particular, they may be able to break
remaining degeneracies.

The dipole-dipole interaction and other weak effects

The dipole—dipole interaction between the nuclear spins of the *He atoms
leads to a very weak, spatially strongly anisotropic, coupling. The relevant
coupling constant gp(T) is given by

go(T) ~%§ ( Ag) )zn. (1.5)

Here p, is the nuclear magnetic moment, such that pi/a’ is the average
dipole energy of two particles at relative distance a (the average atomic
distance), while the second factor measures the probability for these two
particles to form a Cooper pair, and # is the overall particle density. Since
a/a® corresponds to about 107 K, this energy is extremely small and the
resulting interaction of quasiparticles at temperatures of the order of 1073 K
might be expected to be completely swamped by thermal fluctuations. This
is indeed true in a normal system. However, the dipole—dipole interaction
implies a spin—orbit coupling and thereby has a symmetry different from
that of the pairing interaction. In the condensate the symmetries with
respect to a rotation in spin and orbital Space are spontaneously broken,
leading to long-range order (for example of d and { in the case of *He-A).
Nevertheless, the pairing interaction does not fix the relative orientation of
these preferred directions, leaving a continuous degeneracy. As pointed out
by Leggett (1973a,b, 1974a), in this situation the tiny dipole interaction is
able to lift the degeneracy, namely by choosing that particular relative
orientation for which the dipolar energy is minimal. Thereby this interaction
becomes of macroscopic importance. Qne may also view this effect as a
macroscopic amplification of a microscopic interaction via the quantum
coherence of the pair condensate. This correlation is equivalent to a
permanent local magnetic field of about 30 G at any point in the superfluid
(in a liquid!). In *He the dipolar interaction is minimized by a parallel
orientation of d and I; for details see Section 6.3.

Besides the dipole interaction, there are also other, even weaker,
interactions, which—although completely unimportant in a normal system—
may be amplified to macroscopic size by the long-range order in the
superfluid (Leggett 1977a,b, 1978a). For example, the electromagnetic
interaction of the two *He atoms in a Cooper pair leads to a minute
distortion of the electronic shell of the *He atom, thereby shifting the
centres of the positive and negative charges relative to each other. The
orbital motion within the Cooper pair then leads to a magnetic moment




14 1 Introduction

along Iin every Cooper pair. Because of the long-range order of J, these
magnetic moments add up to an equivalent magnetic field of about 0.02 G.
Although this is very small, it makes the system behave differently upon
reversal of the direction of an external magnetic field. Such a change has
indeed been detected (Paulson and Wheatley 1978a). Therefore *He-A is a
liquid orbital ferromagnet!

Leggett (1977a) also predicted that the macroscopic quantum coherence
in superfluid *He will raise weak-interaction effects in elementary particle
physics to a macroscopic level. For example, the interaction between
electrons and protons within a *He atom has a parity-violating part given by
the exchange of 2 neutral Z° boson. This effect is expected to induce a finite
electric dipole moment along the preferred direction # in *He-B, with an
overall magnitude of about 107*% cm ™2, where e is the electronic charge.
This is still a very small effect, but it does not seem to be hopelessly outside
experimental reach. If an experiment succeeded in measuring this effect, it
would be the first detection of parity violation on a macroscopic scale.

The amplification of these and other effects due to the specific long-range
order in superfluid *He is discussed in Chapter 12. Clearly, of all those
interactions the nuclear dipole interaction is by far the most important. Its
effect on the relative orientation of the spontaneously preferred directions
in spin and orbital space has to be included in any description of low-energy
phenomena in superfluid *He (i.e. where the order-parameter structure
itself remains unchanged).

Effect of a magnetic field

An external magnetic field acts on the nuclear spins and thereby leads to an
orientation of the preferred direction in spin space. In the case of *He-A the
orientation energy is minimal if 4 is perpendicular to the field H, since
(taking into account d- § = 0) this orientation guarantees § || H.

Walls

Every experiment is performed in a volume of finite size. Clearly, the walls
will have some effect on the liquid inside. In superfluid *He this effect may
readily be understood by using a simple picture. Let us view the Cooper
pair as a kind of giant “molecule” of two *He quasiparticles orbiting around
each other. For a pair not to bump into a wall, this rotation will have to
take place in a plane parallel to the wall. In the case of *He-A, where the
orbital angular momentum 1/ has the same direction in all Cooper pairs
(standing perpendicular on the plane of rotation), this means that § has to
be oriented perpendicular to the wall. So there exists a strict orientation of /
caused by the walls (Ambegaokar et al. 1974). In the B phase, with its
(pseudo)isotropic order parameter, the orientational effect is not as
pronounced, but there are qualitatively similar boundary conditions.
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1.3.4 Textures

From the above discussion, it is clear that the preferred directions  and d in
He-A are in general subject to different, often competing, orientational
effects (for simplicity, we shall limit our description to *He-A). At the same
time, the condensate will oppose any spatial variation of its long-range
order. Any “bending” of the order-parameter field will therefore increase
the energy, thus giving an internal stiffness or rigidity to the system. While
the orientational effects might want d and { to adjust on the smallest possible
lengthscale, the bending energy wants to keep the configuration as uniform
as possible. Altogether, the competition between these two opposing effects
will lead to a smooth spatial variation of d and § throughout the sample,
called a “texture”. This nomenclature is borrowed from the physics of liquid
crystals, where similar orientational effects of the preferred directions occur
(de Gennes 1974). The largest part of Chapter 7, which itself is by far the
longest chapter in this book, is devoted to the discussion of textures in
superfluid *He.

The bending energy and all quantitatively important orientational
energies are invariant under the replacement d— —d, f— —i A state
where d and [ are parallel therefore has the same energy as one where d and
[ are antiparallel. This leads to two different, degenerate, ground states.
There is then the possibility that in one part of the sample the system is in
one ground state and in the other in a different ground state. Where the two
configurations meet they form a planar “defect” in the texture, called a
“domain wall” (Maki 1977a) (see Fig. 7.22). This is in close analogy to the
situation in a ferromagnet composed of domains with a different orienta-
tions of the magnetization. Domain walls are spatially localized and are
quite stable against external perturbations. In fact, their stability is
guaranteed by the specific nature of the order-parameter structure of
*He-A. Mathematically, this structure may be analysed according to its
topological properties. The stability of a domain wall can then be traced
back to the existence of a conserved “topological charge”. Using the same
mathematical approach, one can show that the order-parameter fields of the
superfluid phases of *He not only allow for planar defects but also for point
and line defects, called “monopoles” and “vortices” respectively. Defects
can be “nonsingular” or “singular”, depending on whether the core of the
defect remains superfluid or whether it is forced to become normal liquid.
The concept of vortices is of course well known from superfluid “He.
However, since the order-parameter structure of superfluid *He is so much
richer than that of superfluid *He, there exist a wide variety of different
vortices in these phases. Their detailed structure has been the subject of
intensive investigation, in particular in the context of experiments on
rotating superfluid *He, where they play a central role (Hakonen and
Lounasmaa 1987); see Chapter 7.
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1.3.5 Superfluid mass currents in 3He-A

Superfluids owe their name to their ability to flow through tiny pores and
narrow slabs, apparently without friction. This extraordinary property,
which is in sharp contrast with our usual experience with liquids, is certainly
the most impressive manifestation of the macroscopic quantum coherence of
the pair condensate in a Fermi system. Mathematically, superfluidity finds
its expression in a complex-valued order parameter, i.e. the existence of
macroscopic quantum-mechanical phase variables.

To understand the flow properties of a superfluid, it is helpful to consider
it as a system of two independent, interpenetrating components; a “super-
fluid” and a “normal” component, with densities p, and p, respectively,
such that p; + p, = p, with p the total density. At T =T, one has p, =0 and
P, = p, while at T =0 one has p, = p and p, = 0. This “two-fluid model” is
useful in many ways (but, of course, it is only a model, since in reality the
liquid is not composed of distinct superfluid and normal particles). In this
model a mass current g is the sum of a superfluid and a normal part g, = p.v,
and g, = p,v, respectively. Here v; and v, are the velocities of the two
components. In a superfluid with isotropic order parameter, ¥ = Poe'?, as
in ‘He, the superfluid velocity v, is simply given by the gradient of the
mMacroscopic, i.e. long-range-ordered, phase of the order parameter:

h
v=2-99, (1.6)

where my is the mass of a *“He atom. This simple dependence implies
VXuv,=0, 1.7

i.e. the flow is “curl-free”—there is no rotational motion (we do not
consider the rotation of the system as a whole). For any closed contour € in
the liquid, we may define the “circulation” x as the line integral over the
velocity:

K=§ds-vs=f df - (V x v). (1.8)
€ area
Using (1.7), it follows that k¥ =0. On the other hand, in a container with a
hole (e.g. a vessel with the shape of a doughnut—a “torus”) the situation is
quite different. The circulation x along a contour ¢ enclosing the hole will
clearly be finite as long as v, # 0. Since the phase of the order parameter is a
macroscopic quantity, it is well defined along € and can only change by
multiplies of 2x when € is traversed. In this case x 1s quantized and (1.8)
takes the well-known form of the Bohr-Sommerfeld quantization condition
for electronic orbits in an atom:

K=m—4N. (1.9)
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Here N=0, +1, +2,..., and h/m, is the so-called “flux quantum”, This
means that supercurrents in a toroidal geometry are quantized and hence
cannot decay continuously: they are (meta)stable, their lifetime being of the
order of cosmological times.

In an anisotropic superfluid such as *He-A the situation is very different.
Herc the order parameter not only has a phase but also has an orientation,
namely the preferred direction I (the spin structure is unimportant in this
discussion). The anisotropy implies that the system can now distinguish
directions relative to I In this case the superfluid velocity will depend not
only on the spatial change of the phase ¢ but also on that of [
Parametrizing § by azimuthal (B) and polar (a) angles, v, now takes the
form

vs=i(V¢—cosﬁVaf) (1.10)
2m

(note that the mass of a Cooper pair, 2m,, appears in (1.10)). The fact that
v, is no longer given by a phase gradient has an immediate, drastic,
consequence: V X v, # 0. This means that V x v, and thereby x in (1.7), can
in general take any value, depending on how 7 changes. There is no longer
any flux quantization! Consequently, a superfluid mass current in *He-A is
unstable (Mermin and Ho 1976). Therefore *He-A does not seem to be a
“superfluid” at al}. However, we have so far neglected the surface of the
container. Since / has to be perpendicular to the wall, i.e. it has a fixed
orientation there, the circulation at the wall is quantized and the stability of
a supercurrent is guaranteed at least very near to the surface. These and
related questions are discussed in detail in Chapter 7.

1.3.6 Dynamic properties

From the discussion presented so far, we have already seen that the static
properties of an anisotropic superfluid are very unusual. Clearly, the
dynamic properties can be expected to be at least as new and diverse.
Indeed, the fact that in superfluid *He Cooper pairs have an internal
structure can only be investigated in detail by studying the dynamics, i.e.
the frequency and momentum dependence, of the condensate. One may
roughly distinguish between magnetic and nonmagnetic dynamic properties,
depending on whether the magnetization of the system is probed or whether
properties such as mass transport (see Chapter 10) or the propagation of
sound are studied.

For the investigation of dynamical effects, it is instructive to have an idea
of the typical frequencies inherent to the superfluid condensate. For this, we
again employ the two-fluid model. Both the normal and the superfiuid
components are essentially characterized by a single timescale each: for the
normal component this is the quasiparticle lifetime z, and for the superfluid



18 1 Introduction

component it is #/A(T), where A(T) is the average of the temperature-
dependent energy gap. The orders of magnitude of the equivalent fre-
quencies are given by 77'=~10MHz and A(T)/#~10’ (1 - T/T.)"?> MHz,
i.e. usually one has v7! << A(T)/#. For frequencies @ much smaller than
either of these characteristic values, the liquid is always in local thermo-
dynamic equilibrium, since the system always has sufficient time to adjust to
any change induced on the timescale w ™. This is called the “hydrodynamic
regime”, which is important for a couple of reasons: (i) in this regime
knowledge of the conserved quantities and of those describing the broken
symmetries is sufficient to describe the properties of the system (see Chapter
9): and (ii) this regime is experimentally well accessible. The multitude of
broken symmetries in superfluid *He consequently leads to very rich
hydrodynamics, which describes the various low-frequency collective excita-
tions of the system. Here the word “collective” (as opposed to “single-
particle”) means that a macroscopic number of particles is involved in a
coherent fashion.

Spin dynamics

Investigations of the collective magnetic (i.e. spin-dependent) properties of
the superfluid phases of *He by nuclear magnetic resonance (NMR) were
particularly useful in identifying the explicit order-parameter structure of
these phases. In wsual NMR experiments the system under investigation is
brought into a sirong constant external magnetic field H,= H,%, which
forces the (nuclear) spin § to precess about H. By applying a weak
high-frequency magnetic field H,; perpendicular to H,, one is able to induce
transitions in §,, the component along H,, of magnitude +#. This effect is
observed as an energy absorption from the magnetic field. In the case of
non_interacting spins these transitions occur exactly at the energy yhH,, i.e.
at the Larmor frequency w, = yH,,, where y is the gyromagnetic ratio of the
nucleus. How does this change in the presence of interactions? For a spin of
magnitude 3%, as in the case of the *He nucleus, a very general statement is
possible (Leggett 1972, 1973b): as long as the interactions are spin-
conserving, there is no change at all—the resonance remains at wy. On the
other hand, for spin-nonconserving interactions, such as the spin—orbit
intcraction caused by the dipole coupling of the nuclear spins, a frequency
shift may indeed cccur. However, such a “nonsecular” shift will usually be
very small, namely at most of the order of the linewidth. The experimental
data obtained by Osheroff er al. (1972b) in connection with their discovery
of the superfluid phases therefore came as a great surprise—they found that
the resonance, although still very sharp, occurred at frequencies substan-
tiaily 'higher than .. The origin of this large shift was especially
mysterious, since it obviously corresponded to a constant local magnetic
field of order 30 G surrounding the nuclear spins in the liquid.

The solution to this puzzle was found by Leggett (1972, 1973b, 1974a),

E
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who showed that the NMR shifts are a consequence of the broken
symmetries of the spin-triplet p-wave condensate, which he named “spon-
taneously broken spin—orbit symmetry”’. As explained earlier, the meaning
of this concept is that the preferred directions in spin and orbital space are
long-range-ordered (individually so, or in a combined way) and the tiny
dipole interaction may take advantage of this situation by lifting the
remaining degeneracy. The macroscopic quantum coherence of the con-
densate therefore raises the dipole coupling to macroscopic importance. In
this way, Leggett (1974a) was able to calculate the general NMR response
of a spin-triplet p-wave condensate. In particular, in the A phase the
transverse NMR frequency o, is given by

w?=wi+ QA5(T), (1.11)

where €4(T) is proportional to the dipole coupling constant (see (1.5)). It
should be noted that the field and temperature dependences of w, are neatly
separated in a “‘Pythagorean” form: @ only depends on H, and £2, only on
T! In fact, Leggett (1974a) worked out a complete theory of spin dynamics,
whose predictions were experimentally confirmed in every detail; this will
be discussed in Chapter 8. For example, the equation of motion of the total
spin § is given by

S=vSXH+Rp, (1.12)

where H = H,+ H; is the total external magnetic field and a dot over a
symbol indicates the time derivative. Here Ry, is the anisotropic ‘“‘dipole
torque”, which itself depends on the change of the dipole energy under a
reorientation of the order parameter. In the normal phase Ry, is always
zero. In the superfluid one has Ry, #0, except for static situations. If the
system is displaced from static equilibrium (for example by applying Hy),
Ry acts as a restoring force. For example, in the A phase a periodic
oscillation of § will lead to an oscillation of d, the preferred direction in spin
space, around the orbital degree of freedom I (which may be assumed to
remain fixed because it cannot move very quickly). Equation (1.12) led
Leggett to a spectacular prediction: even if the high-frequency field H; is
oriented parallel to H,, there is a resonance, i.e. there exists a longitudinal
spin resonance! Since in this case (S X H), =0, (1.12) yields dS,/dt = Rp;,.
In a normal system there can be no resonance since there is no restoring
force: the z component of the magnetization will simply relax exponentially
but will not oscillate. How then can we understand the nature of the
longitudinal oscillation in the case of superfluid *He-A? The A phase only
consists of the two spin substates |#1) and ||| ). They may be viewed as
essentially independent interpenetrating superfluids, which are only very
weakly coupled by the spin-nonconserving dipole coupling. This coupling
allows for a transition of |1f) pairs into ||} ) pairs, and vice versa. (The
situation is quite similar to a pair of weakly coupled superconductors,
where Cooper pairs can tunnel from one superconductor to the other (the



20 I Introduction

“Josephson effect”); the difference here is that the two subsystems fill the
same volume, i.e. they are not spatially separated). Applying a high-
frequency magnetic field parallel to the static field H, leads to oscillatory
nonequilibrium between the two spin subsystems, with the dipole interac-
tior} acting as a restoring force. The resonant frequency of this longitudinal
oscillation occurs at

we = 2,(T7), (1.13)
where Q, is the frequency that has already appeared in the expression for
the transverse frequency (1.11),

Any texture formed by the order-parameter field changes the dipole
torque Ry in a very specific way. Therefore the measurement of NMR
shifts, in combination with the corresponding theory, provides the most
versatile, and at the same time sensitive, tool for the investigation of
order-parameter textures.

NMR frequenciss are generally considerably smaller than the characteris-
tic frequencies 77! and A(T)/# of the normal and superfluid components.
Hence such experiments take place in the hydrodynamic regime. At such
low frequencies, i.e. energies, the magnitude of the order parameter A(T)
does not change at all—only the orientation of its spin part varies. Hence
the structure of the order parameter is left intact—the dynamics is due to a
“rigid” excitation of the order parameter. At higher frequencies, o ~ A(T),
this changes dramatically. To understand the consequences of this, it is
again helpful to view a Cooper pair as some kind of diatomic molecule. As
in the case of a molecule, an energy of the order of the binding energy will
lead to internal excitations such as rotational and vibrational states,

Ultrasound excitations

Such a situation occurs in experiments measuring the attenuation of
ultrasound at sound frequencies close to A(T)/h. Quite unexpectedly, one
finds that the sound attenuation of the superfluid has a sharp maximum
dircctly below the transition temperature 7; this maximum depends
strongly on the frequency w. These and other phenomena are explained by
coliective excitations of the order-parameter structure of the condensate,
They owe their existence to pair correlations in a state with nonzero relative
orbital angular momentum, which imply an internal structure of the Cooper
pair (Wolfle 1973a, 1978a). This structure allows for the excitation of
high-frequency (w ~ A(f)/#) collective oscillations (pair-vibration modes).
Besides this, there is also the possibility of a break-up of the Cooper pair.
Pair breaking is only possible if the energy fiw of the sound wave is larger
thau the minimum energy for breaking a pair, 2Ai(T). Here AY(T) is the
eneigy gap, which in general depends on k, the position on the Fermi
sphere. For smaller energies, only vibrations can be excited. A detailed
theory of sound absorption, including damping effects etc., has been
developed (see Chapter 11) and is in good agreement with experiments.

L ar——— -

1.4 Relation to Other Fields N

In particular, the existence of isotropic and anisotropic energy gaps in the B
and A phase respectively led to early identification of these two phases.
Indeed, in the B phase sound attenuation is independent of the direction of
the sound entering the probe. By contrast, in the A phase it strongly
depends on the relative orientation of the sound wave to the anisotropy axis
I This orientation dependence is very remarkable: by coupling to the
nuclear spins, a weak external magnetic field of the order of 30 G is able to
change the direction of / and thereby to modify the sound absorption. It is
the coherent ordering of nuclear spins that is ultimately responsible for the
anisotropy of sound absorption!

This concludes our elementary discussion of the properties of superfluid
*He. There are many other astonishing aspects of these anisotropic phases,
which will also be discussed in this book.

1.4 RELATION TO OTHER FIELDS

Why spend so much effort on sorting out and explaining the strange
behaviour of states of matter that are not even found in nature, at
temperatures well outside the reach of even a well-equipped low-
temperature laboratory? Partly, of course, “because it’s there”, and
because—like any other system—superfluid >He deserves to be studied in its
own right. However, what is even more important is that superfluid *He is a
model system that exemplifies many of the concepts of modern theoretical
physics and, as such, has given us, and will further provide us, with new
insights into the functioning of quantum-mechanical many-body systems
close to their ground state.

As discussed in Section 1.3, the key to understanding superfluid He is
““spontaneously broken symmetry”. In this respect there are also very
fundamental connections with particle physics, deriving from the interpreta-
tion of the order-parameter field as a quantum field with a rich group
structure. The collective modes of the order parameter as well as the
localized topological defects in a given ground-state configuration are the
particles of this quantum field theory. Various anomalies known from
particle physics can be identified in the *He model system, and one may
hope that insights gained from the study of superfluid *He will turn out to be
useful in elementary particle theory (Volovik 1987).

There are several other physical systems for which the ideas developed in
the context of superfluid *He are relevant or may be relevant in the future.
Dilute solutions of *He in “He constitute a system of fermions moving in a
background of superfluid “He. It is expected that a transition into a
pair-correlated state should take place, which would make this the first
system of two interpenetrating superfluids (Bashkin and Meyerovich 1981).
Unfortunately, the transition temperature is estimated to be rather low,
around 5 puK or even much lower. The symmetry of the pairing is predicted
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to be s-wave at low concentrations (<3%) of *He, with the possibility of
p-wave formatior: at higher concentrations (3-6%) (Pfitzner 1984, Hsu
1984, Hsu and Pines 1985). The transition has not yet been observed,
despite considerable effort (Owers-Bradley e al. 1983).

Another anisotropic superfluid system that does already exist in nature is
not accessible for laboratory experiments: this is the nuclear matter forming
the cores of neutron stars. There the pairing of neutrons has been calculated
to be of p-wave symmetry. Because of the strong spin—orbit nuclear force,
the total angular momentum of the Cooper pairs is J =2 (Hoffberg et al.
1970, Muzikar ef al. 1980, Sauls et al. 1982, Pines and Alpar 1985).

Above all, an anisotropic superconducting state would be most exciting.
There are now strong indications that superconductivity in the so-called
“heavy-fermion™ systems, first discovered by Steglich er al. (1979), is, at
least in some cases, due to the formation of anisotropic pairs with d-wave or
possibly p-wave symmetry (for reviews see Stewart 1984, Lee er al. 1986,
Gorkov 1987, Ott 1987, Fulde et al. 1988). Many of the concepts and ideas
developed for superfluid *He have been adapted to these systems. One must
keep in mind, however, that the charge of the electrons and the presence of
the underlying crystal lattice may lead to qualitatively new behaviour
(Leggett 1987). Other systems where relations to superfluid 3He may
eventually appear are the recently discovered high-T, oxide superconductors
(Bednorz and Miiller 1986, Wu et al. 1987), which are now being
investigated with an intensity unparalleled in the history of condensed-
matter physics.

The above discussion shows that superfluid *He is a field of continuing
interest. We hope that this book will contribute to the future development
and expansion of our understanding of anisotropic superfluid systems by
generating the interest of the beginner, educating the serious student of the
subject and providing reference material for the researcher in this field.

1.5 REVIEWS AND INTRODUCTORY ARTICLES ON
SUPERFLUID *He

1.5.1 General reviews

Theory

Leggett A J 1975 A theoretical description of the new phases of liquid *He. Rev.
Mod. Phys. 47 331

Anderson P W and Brinkman W F 1975 Theory of anisotropic superfluidity in *He.
In The Helium Liquids (Proceedings of the 15th Scottish Universities Summer
School, 1974), ed. J G M Armitage and I E Farquhar (Academic Press,
London), p. 315

1.5 Reviews and Introductory Articles on Superfluid He 23

Anderson P W and Brinkman W F 1978 Theory of anisotropic superfluidity in *He
{(updated version of the above article). In The Physics of Liquid and Solid
Helium, Part 11, ed. K H Bennemann and J B Ketterson (Wiley, New York), p.
177

Wolfle P 1979 Low temperature properties of liquid *He. Rep. Prog. Phys. 42 269

Mineev V P 1983 Superfluid *He: introduction to the subject. Usp. Fiz. Nauk 139
303 [Sov. Phys. Usp. 26 160 (1983)]

Experiment

Wheatley J C 1975 Experimental properties of superfluid *He. Rev. Mod. Phys. 47
415

Lee D M and Richardson R C 1978 Superfluid *He. In The Physics of Liquid and
Solid Helium, Part 11, ed. K H Bennemann and J B Ketterson {Wiley, New
York), p. 287

1.5.2 Reviews of specific topics

Wheatley J C 1978 Further experimental properties of superfluid *He. In Progress in
Low Temperature Physics, Vol. Vila, ed. D F Brewer (North-Holland,
Amsterdam), p. 1

Brinkman W F and Cross M C 1978 Spin and orbital dynamics of superfluid *He. In
Progress in Low Temperature Physics, Vol. Vila, ed. D F Brewer (North-
Holland, Amsterdam), p. 105

Osheroff D D 1978 Recent experiments in superfluid *He. J. Physique 39 Colloq.
C-6, Vol. III, p. 1270 (Proceedings of the 15th International Conference on Low
Temperature Physics, LT-15)

Welfle P 1978 Sound propagation and kinetic coefficients in superfluid *He. In
Progress in Low Temperature Physics, Vol. VIia, ed. D F Brewer (North-
Holland, Amsterdam), p. 191

Volovik G E 1979 Superfluid *He. Hydrodynamics and inhomogeneous states. In
Soviet Scientific Reviews, Section A, Physics Reviews, Vol. 1 (Harwood
Academic Publishers, Chur), p. 23

Fomin I A 1981 Perturbation method in nonlinear spin dynamics of the superfluid
phase of *He. In Soviet Scientific Reviews, Section A, Physics Reviews, Vol, 3
(Harwood Academic Publishers, Chur), p. 275

Serene J W and Rainer D 1983 The quasiclassical approach to superfluid *He. Phys.
Rep. 101 221

Volovik G E 1984 Superfluid properties of *He-A. Usp. Fiz. Nauk 143 73 [Sou.
Phys. Usp. 27 363 (1984)]

Hall H E and Hook J R 1986 The hydrodynamics of superfiuid *He. In Progress in
Low Temperature Physics, Vol. IX, ed. D F Brewer (North-Holland, Amster-
dam), p. 143

Fetter A L 1986 Vortices in rotating superfluid *He. In Progress in Low Temperature
Physics, Vol. X, ed. D F Brewer (North-Holland, Amsterdam), p. 1

Maki K 1986 Solitons in superfluid *He. In Solitons, ed. S E Trullinger, V E
Zakharov and V L Pokrovskii (North-Holland, Amsterdam), p. 435

Salomaa M M and Volovik G E 1987 Quantized vortices in superfluid *He. Rev.
Mod. Phys. 59 533



1 Sukordwryg (0 = *"u)
y o1e dyy wnjuswow
a18uts [e 9lels punoid
deioAe Aq PYN slaquinu
="Tu = ()) *Tu uonouny
‘sanradoid ordossosorw
ue ¥y WNIUSWOW Yiim
w1ed jo zequinu 9y} Aq
| soyeIsuadie Ag1ous Yl

L4vdIiSVNO FHL LC

d uonorisjul ul A[2a1}00
uroq a3 u doop sajels
| TWIo 2y} Aq paonpal
1 seimeradwa e ey
X9 2q UEd swoje 3Iayds
2 ‘renuajod onwoBIANUI
p opniedioul 3yl SH,
w sy, °, sopniedisenb,,
SWI9) Ul paqudsap 3q
£F1510-MO] 211 YOIYM 0}
' paseq st ] “(LS6T ‘9561
U30M19Q SUONOBIANUI JO
43 woij funie)s ‘[epout
® 2q ued o, pmby jo
5} UONISUERI] 91) O) UMOP
Fuel arnjeraduwa) a1y Uy

spinbi
jo Asoay]

]
i
w

Avpo
sdyq SH, pmpiadns Funeior ur seONI0A 861 A (O BPRWSBUNO] mm:wem :ﬂ:&oxmm
. £ee PTE 24N
uorre1ol Ul oM, pingradng 9867 A (O BEWSEUNO] PUE W JA PRUIO[ES ‘d A ASUIN

68¢ ¥T sAyd "dutaruo) ~oo1q) winiey pingradng €861 J sqgqoq
‘It 6€ 420n1g “syq “yieyBssngradng 21 ig-wnifey won_zcma:mﬁmm%ﬁmQomw%ﬂ:o\/
LST ¥9 "Soiq 19§ "¢ w2y Jo saseyd moN LL6T D W Ss0ID
. 95 (1oquiada()
S€T ‘uvouawy oynuawg ¢ wmiay pingradng 9/67 W (1 297 Pue (I N UIWISW
€8 SE 4nonvapus oY, Jo aseqd mou oy 9/6] [ vV 1o
€ 62 Avpo] "sdyq -ea1yy wnijay jo seseyd pmgredng 9261 O [ Ao1eUM
£5¢ ST sdyq “dwauo) -oH, pmby jo saseyd pingiadns oy, $/61 A O vRWSEUNO]

sojoie Aiojanponyu) 'L

‘6 “deyD ‘(pro3xQ ‘ssaid

Uopuale|[D) upa puz ‘wnysf pinbry op uononposnuy uy (361 S A SHAF PUE [ SYIIM
6 *deyD ‘(torsug ‘1a31H

wepy) ups pug ‘Kmuompuodiadng puv Anpmyladng 9861 [ AS(ILL pue ¥ @ A9IHL
4 “deyD ‘(pIOJXQ ‘s$91J UOPUSIR]D)

12PL0SIT pup 12p20 WSHUSPRY 3NN TRET AN UBWIpjon pue ¢ ueSeiqy

sjoalgns paje|as uo s)ooq ul suoissnasiq £°'SL

uon?
HoNpoyuy | ye

1 e e b e

i
f
!




